
C H A P T E R  4 

The Spatial Analyses of Data Fields 

A fundamental problem in oceanography is how best to represent spatially distributed 
data (or statistical products computed from these data) in such a way that dynamical 
processes or their effects can best be visualized. As in most aspects of observational 
analysis, there has been a dramatic change in the approach to this problem due to the 
increased abundance of digital data and our ability to process them. Prior to the use of 
digital computers, data displays were constructed by hand and "contouring" was an 
acquired skill of the descriptive analyst. Hand contouring is still practiced today 
although, more frequently, the data points being contoured are averaged values 
produced by a computer. In other applications, the computer not only performs the 
averaging but also uses objective statistical techniques to produce both the gridded 
values and the associated contours. 

The purpose of this section is to review data techniques and procedures designed to 
reduce spatially distributed data to a level that can be visualized easily by the analyst. 
We will discuss methods that address both spatial fields and time series of spatial 
fields since these are the primary modes of data distribution encountered by the 
oceanographer. Our focus is on the more widely used techniques which we present in a 
practical fashion, stressing the application of the method for interpretive applications. 

4.1 T R A D I T I O N A L  B L O C K  A N D  B U L K  A V E R A G I N G  

A common method for deriving a gridded set of data is simply to average the available 
data over an arbitrarily selected rectangular grid. This averaging grid can lie along any 
chosen surface but is most often constructed in the horizontal or vertical plane. 
Because the grid is often chosen for convenience, without any consideration to the 
sampling coverage, it can lead to an unequal distribution of samples per grid "box". 
For example, because distance in longitude varies as the cosine of the latitude, the 
practice of gridding data by 5 or 10 ~ squares in latitude and longitude may lead to 
increasingly greater spatial coverage at low latitudes. Although this can be overcome 
somewhat by converting to distances using the central latitude of the box (Poulain and 
Niiler, 1989), it is easy to see that inhomogeneity in the sampling coverage can quickly 
nullify any of the useful assumptions made earlier about the Gaussian nature of 
sample populations or, at least, about the set of means computed from these samples. 
This is less of a problem with satellite-tracked drifter data since satellite ground tracks 
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converge with increasing latitude, allowing the data density in boxes of fixed 
longitude length to remain nearly constant. 

With markedly different data coverage between sample regions, we cannot always 
fairly compare the values computed in these squares. At best, one must be careful to 
consider properly the amount of data being included in such averages and be able to 
evaluate possible effects of the variable data coverage on the mapped results. Each 
value should be associated with a sample size indicating how many data points, N, 
went into the computed mean. This will not dictate the spatial or temporal distri- 
butions of the sample data field but will at least provide a sample size parameter 
which can be used to evaluate the mean and standard deviation at each point. While 
the standard deviation of each grid sample is composed of both spatial and temporal 
fluctuations (within the time period of the grid sample), it does give an estimate of the 
inherent variability associated with the computed mean value. 

Despite the problems with nonuniform data coverage, it has proven worthwhile to 
produce maps or cross-sections with simple grid-averaging methods since they 
frequently represent the best spatial resolution possible with the existing data 
coverage. The approach is certainly simple and straightforward. Besides, the data 
coverage often does not justify more complex and computer-intensive data reduction 
techniques. Specialized block-averaging techniques have been designed to improve 
the resolution of the corresponding data by taking into account the nature of the 
overall observed global variability and by trying to maximize the coverage 
appropriately. For example, averaging areas are frequently selected which have 
narrow meridional extent and wide zonal extent, taking advantage of the stronger 
meridional gradients observed in the ocean. Thus, an averaging area covering 2 ~ 
latitude by 10 ~ longitude may be used to better resolve the meridional gradients which 
dominate the open ocean (Wyrtki and Meyers, 1975). This same idea may be adapted 
to more limited regions if the general oceanographic conditions are known. If so, the 
data can be averaged accordingly, providing improved resolution perpendicular to 
strong frontal features. A further extension of this type of grid selection would be to 
base the entire averaging area selection on the data coverage. This is difficult to 
formalize objectively since it requires the subjective selection of the averaging scheme 
by an individual. However, it is possible in this way to improve resolution without a 
substantial increase in sampling (Emery, 1983). 

All of these bulk or block-averaging techniques make the assumption that the data 
being considered in each grid box are statistically homogeneous and isotropic over the 
region of study. Under these assumptions, area sample size can be based strictly on the 
amount of data coverage (number of data values) rather than having to know details 
about processes represented by the data. Statistical homogeneity does not require that 
all the data were collected by the same instrument having the same sampling 
characteristics. Thus, our grid-square averaging can include data from many different 
instruments which generally have the same error limits. 

One must be careful when averaging different kinds of measurements, even if they 
are of the same parameter. It is very tempting, for example, to average mechanical 
bathythermograph (MBT) temperatures with newer expendable bathythermograph 
(XBT) temperatures to produce temperature maps at specific depths. Before doing so, 
it is worth remembering that XBT data are likely to be accurate to 0.1~ as reported 
earlier, while MBT data are decidedly less accurate and less reliable. Another marked 
difference between the two instruments is their relative vertical coverage. While most 
MBTs stopped at 250 m depth, XBTs are good to 500-1800 m, depending on probe 
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type. Thus, temperature profiles from MBTs can be expected to be different from 
those collected with XBTs. Any mix of the two will necessarily degrade the average to 
the quality of the MBT data and bias averages to shallow (< 300 m) depths. In some 
applications, the level of degraded accuracy will be more than adequate and it is only 
necessary to state clearly and be aware of the intended application when mixing the 
data from these instruments. Also, one can expect distinct discontinuities as the data 
make the transition from a mix of measurements at shallower levels to strictly XBT 
data at greater depth. 

Other important practical concerns in forming block averages have to do with the 
usual geographic location of oceanographic measurements. Consider the global 
distribution of all autumn measurements up to 1970 of the most common oceano- 
graphic observation, temperature profiles (Figure 4.1.1). It is surprising how 
frequently these observations lie along meridians of latitude or parallels of longitude. 
This makes it difficult to assign the data to any particular 5 or 10 ~ square when the 
border of the square coincides with integer values of latitude or longitude. When the 
latter occurs, one must decide to which square the borders will be assigned and be 
consistent in carrying this definition through the calculation of the mean values. 

As illustrated by Figure 4.1.1, data coverage can be highly nonuniform. In this 
example, some areas were frequently sampled while others were seldom (or never) 
occupied. Such nonuniformity in data coverage is a primary factor in considering the 
representativeness of simple block averages. It certainly brings into question the 
assumptions of homogeneity (spatially uniform sampling distribution) and isotropy 
(uniform sampling regardless of direction) since the sample distribution varies greatly 
with location and may often have a preferred orientation. The situation becomes even 
more severe when one examines the quality of the data in the individual casts 
represented by the dots in Figure 4.1.1. In order to establish a truly consistent data set 
in terms of the quality of the observations (i.e. the depth of the cast, the number of 
samples, the availability of oxygen and nutrients, and so on), it is generally necessary 
to reject many of the available hydrographic casts. 

The question of data coverage depends on the kind of scientific questions the data 
set is being asked to address. For problems not requiring high-quality hydrographic 
stations, a greater number of observations are available, while for more restrictive 
studies requiring a higher accuracy, far fewer casts would match the qualifications. 
This is also true for other types of historical data but is less true of newly collected 
data. However, even now, one must ensure that all observations have a similar level of 
accuracy and reliability. Variations in equipment performance, such as sensor 
response or failure, must be compensated for in order to keep the observations 
consistent. Also, changes in instrument calibration need to be taken into account over 
the duration of a sampling program. For example, transmissometer lenses frequently 
become matted with a biotic film that reduces the amount of light passing between the 
source and receiver lenses. A nonlinear, time-dependent calibration is needed to 
correct for this effect. 

Despite the potential problems with the block-averaging approach to data 
presentation, much information can be provided by careful consideration of the 
data rather than the use of more objective statistical methods to judge data quality. 
The shift to statistical methods represents a transition from the traditional 
oceanographic efforts of the early part of the twentieth century when considerable 
importance was given to every measurement value. In those days, individual scientists 
were personally responsible for the collection, processing and quality of their data. 
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Figure 4.1.1. The global distribution of all temperature profiles collected during oceanographic surveys in the fall up to 1970. Sampling is most dense along major 
shipping routes. 
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Then, it was a simple task to differentiate between "correct" and "incorrect" samples 
without having to resort to statistical methods to indicate how well the environment 
had been observed. In addition, earlier investigations were primarily concerned with 
defining the mean state of the ocean. Temporal variability was sometimes estimated 
but was otherwise ignored in order to emphasize the mean spatial field. With today's 
large volumes of data, it is no longer possible to "hand check" each data value. A good 
example is provided by satellite-sensed information which generally consists of large 
groupings of data that are usually treated as individual data values. 

In anticipation of our discussion of filtering in Chapter 5, we should point out that 
block averaging corresponds to the application of a box-car-shaped filter to the data 
series. This type of filter has several negative characteristics such as a slow filter roll 
off and large side lobes which distort the information in the original data series. 

4.2 OBJECTIVE ANALYSIS 

In a general sense, objective analysis is an estimation procedure which can be specified 
mathematically. The form of objective analysis most widely used in physical 
oceanography is that of least squares optimal interpolation, more appropriately 
referred to as Gauss-Markov smoothing, which is essentially an application of the linear 
estimation (smoothing) techniques discussed in Chapter 3. Since it is generally used 
to map spatially nonuniform data to a regularly spaced set of gridded values, Gauss- 
Markov smoothing might best be called "Gauss-Markov mapping". The basis for the 
technique is the Gauss-Markov theorem which was first introduced by Gandin (1965) 
to provide a systematic procedure for the production of gridded maps of 
meteorological parameters. If the covariance function used in the Gauss-Markov 
mapping is the covariance of the data field (as opposed to a more ad hoc covariance 
function, as is usually.the case), then Gauss-Markov smoothing is optimal in the sense 
that it minimizes the mean square error of the objective estimates. A similar 
technique, called Kriging after a South African engineer H. G. Krige, was developed in 
mining engineering. Oceanographic applications of this method are provided by 
Bretherton et al. (1976), Freeland and Gould (1976), Bretherton and McWilliams 
(1980), Hiller and K~se (1983), Bennett (1992), and others. 

The two fundamental assumptions in optimal interpolation are that the statistics of 
the subject data field are stationary (unchanging over the sample period of each map) 
and homogeneous (the same characteristics over the entire data field). A further 
assumption often made to simplify the analysis is that the statistics of the second 
moment, or covariance function, are isotropic (the same structure in all directions). 
Bretherton et al. (1976) point out that if these statistical characteristics are known, or 
can be estimated for some existing data field (such as a climatology based on historical 
data), they can be used to design optimum measurement arrays to sample the field. 
Since the optimal estimator is linear and consists of a weighted sum of all the 
observations within a specified range of each grid point, the objective mapping 
procedure produces a smoothed version of the original data field that will tend to 
underestimate the true field. In other words, if an observation point happens to 
coincide with an optimally interpolated grid point, the observed value and 
interpolated value will probably not be equal due to the presence of noise in the 
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data. The degree of smoothing is determined by the characteristics of the signal and 
error covariance functions used in the mapping and increases with increasing spatial 
scales for a specified covariance function. 

The general problem is to compute an est imate/)(x,  t) of the scalar variable D(x, t) 
at a position x = (x,y) from irregularly spaced and inexact observations d(x,, t) at a 
limited number of data positions Xn (n = 1, 2, ..., N). Implementation of the procedure 
requires a priori knowledge of the variable's covariance function, C(r), and 
uncorrelated error variance, e, where r is the spatial separation between positions. 
For isotropic processes, C(r) ~ C(r), where r = I rl. Although specification of the 
covariance matrix should be founded on the observed structure of oceanic variables, 
selection of the mathematical form of the covariance matrix is hardly an "objective" 
process even with reliable data (cf. Denman and Freeland, 1985). In addition to the 
assumptions of stationarity, homogeneity, and isotropy, an important constraint on 
the chosen covariance matrix is that it must be positive definite (no negative 
eigenvalues). Bretherton et al. (1976) report that objective estimates computed from 
nonpositive definite matrices are not optimal and the mapping results are poor. In 
fact, nonpositive definite covariance functions can yield objective estimates with 
negative expected square error. One way to ensure that the covariance matrix is 
positive definite is to fit a function which results in a positive definite covariance 
matrix to the sample covariance matrix calculated from the data (Hiller and K~se, 
1983). This results in a continuous mathematical expression to be used in the data 
weighting procedure. In attempting to specify a covariance function for data collected 
in continental shelf waters, Denman and Freeland (1985) further required that 
02C/02x and 02C/02y be continuous at r - 0 (to ensure a continuously differentiable 
process) and that the variance spectrum, S(k), derived from the transform of C(r) be 
integrable and nonnegative for all wavenumbers, k (to ensure a realizable stochastic 
random process). 

Calculation of the covariance matrix requires that the mean and "trend" be 
removed from the data (the trend is not necessarily linear). In three-dimensional 
space, this amounts to the removal of a planar or curvilinear surface. For example, the 
mean density structure in an upwelling domain is a curved surface which is shallow 
over the outer shelf and deepens seaward. Calculation of the density covariance matrix 
for such a region first involves removal of the curved mean density surface (Denman 
and Freeland, 1985). Failure to remove the mean and trend would not alter the fact 
that our estimates are optimal but it would redistribute variability from unresolved 
larger scales throughout the wavenumber space occupied by the data. We would then 
map features that have been influenced by the trend and mean. 

As discussed later in the section on time series, there are many ways to estimate the 
trend. If ample good-quality historical data exist, the trend can be estimated from 
these data and then subtracted from the data being investigated. If historical data are 
not available, or the historical coverage is inadequate, then the trend must be 
computed from the sample data set itself. Numerous methods exist for calculating the 
trend and all require some type of functional fit to the existing data using a least- 
squares method. These functions can range from straight lines to complex higher- 
order polynomials and associated nonlinear functions. We note that, although many 
candidate oceanographic data fields do not satisfy the conditions of stationarity, 
homogeneity, and isotropy, their anomaly fields do. In the case of anomaly fields, the 
trend and mean have already been removed. Gandin (1965) reports that it may be 
possible to estimate the covariance matrix from existing historical data. This is more 
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often the case in meteorology than in oceanography. In most oceanographic appli- 
cations, the analyst must estimate the covariance matrix from the data set being 
studied. 

In the following, we present a brief outline of objective mapping procedures. The 
interested reader is referred to Gandin (1965) and Bretherton et al. (1976) for further 
details. As noted previously, we consider the problem of constructing a gridded map of 
the scalar variable D(x, t) from an irregularly spaced set of scalar measurements d(x, t) 
at positions x and times t. The notation x refers to a suite of measurement sites, xn (n 
= 1, 2, ...), each with distinct (x, y) coordinates. We use the term variable to mean 
directly measured oceanic variables as well as calculated variables such as the density 
or streamfunction derived from the observations. Thus, the data d(x, t) may consist of 
measurements  of the particular variable we are trying to map or they may consist of 
some other variables that are related to D in a linear way. The former case gives 

d(x, t) - D(x, t) + c(x) (4.2.1) 

where the c are zero-mean measurement  errors which are not correlated with the 
measurement  D. In the latter case 

d(x, t) - F[D(x, t)] + e(x) (4.2.2) 

in which F is a linear functional which acts on the function D in a linear fashion to 
give a scalar (Bennett 1992). For example, if D(x, t) - tI,(x, t) is the streamfunction, 
then the data could be current meter measurements of the zonal velocity field, 
u(x, t) = F[tI,(x, t)], where 

O~(x) 
d(x, t) - u ( x ,  t) + e(x) - +~ c(x) (4.2.3) 

Oy 

and 0 $ / 0 y  is the gradient of the streamfunction in the meridional direction. 
To generalize the objective mapping problem, we assume that mean values have not 

been removed from the original data prior to the analysis. If we consider the objective 
mapping for a single "snap shot" in time (thereby dropping the time index, t), we can 
write linear estimates /D(x) of D(x) as the summation over a weighted set of the 
measurements  di (i = 1, . . . ,  N) 

N 

/])(x) - D(x) + ~ b i (d i -  -d) (4.2.4) 
i=1 

where the overbar denotes an expected value (mean), di = d(x) = d(xi), 1 <_ i <_ N is 
shorthand notation for the data values, and the bi = b(x) = b(xi) are, as yet unspecified, 
weighting coefficients at the data points xi. The selection of the N data values is made 
by restricting these values to some finite area about the grid point. The estimates of 
the parameters b; in equation (4.2.4) are found in the usual way by minimizing the 
mean square variance of the error e(x) 2 between the measured variable, D, and the 
linear estimate, D, at the data location. In particular, 

e(x) 2 -  [D(x) -/D(x)] 2 (4.2.5) 

which on substitution of (4.2.4) yields 
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e(x) 2 - [D(x) - D(x)] 2 
N N N 

+ ~ ~ bibj(di - -d)(dj - -d) - 2 Z bi(di - d)(D - -D) (4.2.6) 
i=1 j=l i=1 

Note, that if the mean has been removed, we can set D(x) = d(x) - 0 in (4.2.6). The 
mean square difference in equation (4.2.6) is minimized when 

N 
bi --  ~ ( { (d i  - d ) ( d j  - ~)3-1 (dj - d ) ( O  - D ) }  (4.2.7) 

j=l  

To calculate the weighting coefficients in (4.2.7), and therefore the grid-value 
estimates in (4.2.4), we need to compute the covariance matrix by averaging over all 
possible pairs of data taken at points xi, x3; the covariance matrix is 

(di - -d) (dj - d )  - ( d ( x i )  - -d) (d  (x j )  - d )  (4.2.8) 

We do the same for the interpolated value 

(di - -d) (Oj  - -D) - ( d ( x i )  - -d) ( d ( x k  ) - -D) (4.2.9) 

where xk is the location vector for the grid point estimate/)(xk).  
In general, we need a series of measurements at each location so that we can obtain 

statistically reliable expected values for the elements of the covariance matrices in 
(4.2.8) and (4.2.9). The expected values in the above relations could be computed as 
ensemble averages over spatially distributed sets of measurements. Typically, 
however, we have only one set of measurements for the specified locations xi, xy. As 
a consequence, we need to assume that, for the region of study, the data statistics are 
homogeneous, stationary and isotropic. If these conditions are met, the covariance 
matrix for the data distribution (for example, sea surface temperature) depends only 
on the distance r between data values, where r - Ixj - xi]. Thus, we have elements i , j ,  
of the covariance matrix given by 

(d  i - d )  (dj - -d) - C ( [xj - x i  [ ) + 6--2 
(4.2.10) 

where C(]r l )  = d(x)d(x + r) is the covariance matrix and the mean square e r r o r  c (x)  2 

implies that this estimate is not exact and there is some error in the estimation of the 
correlation function from the data. We note that this is not the same error in (4.2.6) 
that we minimize to solve for the weights in (4.2.7). The matrix can now be calculated 
by forming pairs of observed data values separated into bins according to the distance 
between sample sites, xi. These are then averaged over the number of pairs that have 
the same separation distance to yield the product matrix 

m 

(di - d)  (dj - d )  

This computation requires us to define some "bin interval" for the separation 
distances so that we can group the product values together. To ensure that the 
resulting covariance matrix meets the condition of being positive definite, a smooth 
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function satisfying this requirement can be fitted to the computed raw covariance 
function. This fitted covariance function is used for 

n 

(di - d ) ( D  - D )  

and to calculate 

[ (di - -d) (di - d) ] - 

The weights bi are then computed from (4.2.7). It is a simple process to then compute 
the optimal grid value estimates from (4.2.4). Note that, where the data provide no 
help in the estimate of D (that is, c(x) ~ ~ ) ,  then bi = 0 and the only reasonable 
estimate i s / ) (x)  - D, the mean value. Similarly, if the data are error free (such that 
c(x) 2 ~ 0), then D(xi) - D(xi) for all xi (i = 1, ..., N). In other words, the estimated 
value and the measured data are identical at the measurement sites (within the limits 
of the noise in the data) and the estimator interpolates between the observations. 

The critical step in the objective mapping procedure is the computation of the 
covariance matrix. We have described a straightforward procedure to estimate the 
covariance matrix from the sample data. As with the estimate of the mean or overall 
trend, it is often possible to use an existing set of historical data to compute the 
covariance matrix. This is frequently the case in meteorological applications where 
long series of historical data are available. In oceanography, however, the covariance 
matrix typically must be computed from the sample data. Where historical data are 
available, it is important  to recognize that using these data to estimate the covariance 
matrix for use with more recently collected data is tantamount to assuming that the 
statistics have remained stationary since the time that the historical data were 
collected. 

Bretherton et al. (1976) suggest that objective analysis can be used to compute the 
covariance matrix. In this case, they start with an assumed covariance function, F, 
which is then compared with a covariance function computed from data with a fixed 
distance Xo. The difference between the model P and the real F computed from the 
data is minimized by repeated iteration. 

To this point, we have presented objective analysis as it applies to scalar fields. We 
can also apply optimal (Gauss-Markov) interpolation to vector fields. One approach is 
to examine each scalar velocity component separately so that for n velocity vectors we 
have 2n velocity components 

dr - Ul  (Xr); dr+n ~ U2(Xr) (4.2.11) 

where U 1 and u2 are the x, y velocity components at x,. If the velocity field is 
nondivergefft, we can introduce a scalar streamfunction tI,(x) such that 

0tI/ 0~  
; ul - Oy u2 Ox (4 2 12) 

and apply scalar methods to ~. 
Once the optimal interpolation has been executed, there is a need to return to 

equation (4.2.6) to compute the actual error associated with each optimal inter- 
polation. To this end, we note that we now have the interpolated data from (4.2.4). 
Thus, we can use / )  computed from (4.2.4) as the value for D in (4.2.6). The product in 
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the last term of (4.2.6) is computed from the covariance in (4.2.9). In this way, it is 
possible to compute the error associated with each optimally interpolated value. 
Frequently, this error field is plotted for a specific threshold level, typically 50% of the 
interpolated values in the mapped field (see following examples). It is important to 
retain this error estimate as part of the optimal interpolation since it enables us to 
assess the statistical significance of individual gridded values. 

4 . 2 . 1  O b j e c t i v e  m a p p i n g :  e x a m p l e s  

An example of objective mapping applied to a single oceanographic survey is provided 
by the results of Hiller and K~ise (1983). The data are from a CTD survey grid 
occupied in the North Atlantic about midway between the Azores and the Canary 
Islands (Figure 4.2.1). At each CTD station, the geopotential anomaly at 25 db (dBar) 
relative to the anomaly at 1500 db (written 25/1500 db) was calculated and selected as 
the variable to be mapped. The two-dimensional correlation function for these data is 
shown in three-dimensional perspective in Figure 4.2.2(a). A series of different 
correlation functions were examined and an isotropic, Gaussian function that was 
positive definite was selected as the best fit (Figure 4.2.2b). Using this covariance 
function, the authors obtained the objectively mapped 25/1500 db geopotential 
anomaly shown in Figure 4.2.3(a). Removal of a linear trend gives the objective map 
shown in Figure 4.2.3(b) and the associated RMS error field shown in Figure 4.2.3(c). 
Only near the outside boundaries of the data domain does the RMS error increase to 
around 50% of the geopotential anomaly field (Figure 4.2.3b). 
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Figure 4.2.1. Locations of CTD stations taken in the North Atlantic between the Azores and the Canary 
Islands in spring 1982 (experiment POSEIDON 86, Hiller and K~e, 1983). Also shown are locations of 

current profile (P) and hydrocast (W) stations. 
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Figure 4.2.2. The two-dimensional correlation function C(r) for the geopotential anomaly field at 25 db 
referenced to 1500 db (25/1500 dBar) for the data collected at stations shown in Figure 4.2.1 (I db = 
1 dBar - I m2/s2). Here, r = (x, y), where x, y are the eastward and northward coordinates, 
respectively. Distances are in nautical miles. (a) The "raw" values of C(r) based on the observations; (b) 

A model of the correlation function fitted to (a). (From Hiller and K~e,  1983). 
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Figure 4.2.3. Objective analysis of the geopotential anomaly field 25/1500 db (~2/$2) using the 
correlation function in equation (4.2.2b). (a) The approximate center of the frontal band in this region of 
the ocean is marked by the 13.5 db isoline; (b) Same as (a) but after subtraction of the linear spatial 
trend; (c) Objective analysis of the residual mesoscale perturbation field 25/1500 dBar after removal of 

the composite mean field. (After Hiller and K~se, 1983.) 



The Spatial Analyses of Data Fields 317 

Figure 4.2.4. Analysis of the velocity fieldfor the current profile collected on the grid in Figure 4.2.1. (a) 
The input velocity field; (b) Objective analysis of the input velocity field with correlation scale A = 
200 km and assumed noise variance of 30% of the total variance of the field. This approach treats 
mesoscale variability on scales less than 200 km as noise, which is smoothed out. In the shaded area, the 

error variance exceeds 50% of the total variance. 
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As an example of objective mapping applied to a vector field, Hiller and K~ise (1983) 
examined a limited number of satellite-tracked drifter trajectories that coincided with 
the CTD survey in space and time. Velocity vectors based on daily averages of low- 
passed finite difference velocities are shown in Figure 4.2.4(a). Rather than compute a 
covariance function for this relatively small sample, the covariance function from the 
analysis of the 25/1500 db geopotential anomaly was used. Also, an assumed error 
level, c 2, was used rather than a computed estimate from the small sample. With the 
isotropic correlation scale estimated to be 75 km, the objective mapping produces the 
vector field in Figure 4.2.4(b). The stippled area in this figure corresponds to the 
region where the error variance exceeds 50% of the total variance. Due to the paucity 
of data, the area of statistically significant vector mapping is quite limited. 
Nevertheless, the resulting vectors are consistent with the geopotential height map 
in Figure 4.2.3(a). 

Another example is provided by McWilliams (1976) who used dynamic height 
relative to 1500 m depth plus deep float velocities at 1500 m to estimate the stream- 
function field. The isotropic covariance function for the random fluctuations in 
streamfunction t I , '=  ~ -  ~ at 1500 m depth was 

C(r) =~' (x ,z ,  t )~ ' (x  + r, z, t) 

=9,2(1 _ c2)(1 - 72r2)exp (-162/,2) 
(4.2.13) 

where r is a horizontal separation vector, r = I r I, e is an estimate of relative 
measurement noise (0 < c _< 1), and 7 -1, ~5 -1 are decorrelation length scales found by 
fitting equation (4.2.13) to prior data. Denman and Freeland (1985) discuss the merits 
of five different covariance functions fitted to geopotential height data collected over a 
period of three years off the west coast of Vancouver Island. For other examples, the 
reader is referred to Bennett (1992). 

As a final point, we remark that the requirement of isotropy is easily relaxed by 
using direction-dependent covariance matrices, C(r~, r2) whose spatial structure 
depends on two orthogonal spatial coordinates, rl and r2 (with r2 > rl). For example, 
the map of light attenuation coefficient at 20 m depth obtained from transmissometer 
profiles off the west coast of Vancouver Island (Figure 4.2.5) uses an exponentially 
decaying, elliptically shaped covariance matrix 

C(rl, r2) = exp[-aZXx 2 - b a y  2 - r  (4.2.14a) 

where 

a - 1{[cos(Tr4)/180)/rl]2+[ sin (Tr4)/180)/r2] 2 } 

b - �89 2 } 

c = cos(~rO/180)sin(TrO/180)[r~ - r~]/(rlr2)2 

(4.2.14b) 

Here, zX~c and Ay are, respectively, the eastward and northward distances from the grid 
point to the data point, and ~ is the orientation angle (in degrees) of the coastline 
measured counterclockwise from north. In this case, it is assumed that the alongshore 
correlation scale, r2, is twice the across-shore correlation scale, rl. The idea here is 
that, like water-depth changes, alongshore variations in coastal water properties such 
as temperature, salinity, geopotential height, and log-transformed phytoplankton 
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chlorophyll-a pigment concentration occur over longer length scales than across-shore 
variations. 
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Figure 4.2.5. Objective analysis map of light attenuation coefficient (per meter) at 20 m depth on the 
west coast of Vancouver Island obtained from transmissometer profiles. The covariance function C(r l, r2) 
given by the ellipse is assumed to decay exponentially with distance with the longshore correlation scale r2 

= 50 km and cross-shore correlation scale r l = 25 km. 

4.3 E M P I R I C A L  O R T H O G O N A L  F U N C T I O N S  

The previous section dealt with the optimal smoothing of irregu, .... ly spaced data onto 
a gridded map. In other studies of oceanic variability, we may be presented with a 
large data set from a grid of time-series stations which we wis h to compress into a 
smaller number of independent p~eces of information. For example, in studies of 
climate change, it is necessary to deal with time series of spatial maps, such as surface 
temperature. A useful obvious choice would involve a linear combination of 
orthogonal spatial "predictors", or modes, whose net response as a function of time 
would account for the combined variance in all of the observations. The signals we 
wish to examine may all consist of the same variable, such as temperature, or they may 
be a mixture of variables such as temperature and wind velocity, or current and sea 
level. The data may be in the form of concurrent time-series records from a grid 
(regular or irregular) of stations xi(t) ,yi( t)  on a horizontal plane or time-series records 
at a selection of depths on an xi(t), zi(t) cross-section. Examples of time series from 
cross-sectional data include those from a single current meter string or from along- 
channel moorings of thermistor chains. 

A useful technique for compressing the variability in this type of time-series data is 
principal component analysis (PCA). In oceanography, the method is commonly known 
as empirical orthogonalfunction (EOF) analysis. The EOF procedure is one of a larger 
class of inverse techniques and is equivalent to a data reduction method widely used in 
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the social sciences known as factor analysis. The first reference we could find to the 
application of EOF analysis to geophysical fluid dynamics is a report by Edward 
Lorenz (1956) in which he develops the technique for statistical weather prediction 
and coins the term "EOF". 

The advantage of EOF analysis is that it provides a compact description of the 
spatial and temporal variability of data series in terms of orthogonal functions, or 
statistical "modes." Usually, most of the variance of a spatially distributed series is in 
the first few orthogonal functions whose patterns may then be linked to possible 
dynamical mechanisms. It should be emphasized that no direct physical or mathe- 
matical relationship necessarily exists between the statistical EOFs and any related 
dynamical modes. Dynamical modes conform to physical constraints through the 
governing equations and associated boundary conditions (LeBlond and Mysak, 1979); 
empirical orthogonal functions are simply a method for partitioning the variance of a 
spatially distributed group of concurrent time series. They are called "empirical" to 
reflect the fact that they are defined by the covariance structure of the specific data set 
being analyzed (as shown below). 

In oceanography and meteorology, EOF analysis has found wide application in both 
the time and frequency domains. Conventional EOF analysis can be used to detect 
standing oscillations only. To study propagating wave phenomena, we need to use 
lagged covariance matrix (Weare and Nasstrom, 1982), or complex principal compon- 
ent analysis in the frequency domain (Wallace and Dickinson, 1972; Horel, 1984). Our 
discussion, in this section, will focus on space/time domain applications. Readers 
seeking more detailed descriptions of both the procedural aspects and their appli- 
cations are referred to Lorenz (1956), Davis (1976), and Preisendorfer (1988). 

The best analogy to describe the advantages of EOF analysis is the classical 
vibrating drum problem. Using mathematical concepts presented in most under- 
graduate texts, we know that we can describe the eigenmodes of drumhead oscillations 
through a series of two-dimensional orthogonal patterns. These modes are defined by 
the eigenvectors and eigenfunctions of the drumhead. Generally, the lowest modes 
have the largest spatial scales and represent the most dominant (most prevalent) 
modes of variability. Typically, the drumhead has as its largest mode an oscillation in 
which the whole drumhead moves up and down, with the greatest amplitude in the 
center and zero motion at the rim where the drum is clamped. The next highest mode 
has the drumhead separated in the center with one side 180 ~ out of phase with other 
side (one side is up when the other is down). Higher modes have more complex 
patterns with additional maxima and minima. Now, suppose we had no mathematical 
theory, and were required to describe the drumhead oscillations in terms of a set of 
observations. We would look for the kinds of eigenvalues in our data that we obtain 
from our mathematical analysis. Instead of the analytical or dynamical solutions that 
can be derived for the drum, we wish to examine "empirical" solutions based strictly 
on a measured data set. Since we are ignorant of the actual dynamical analysis, we call 
the resulting modes of oscillation, empirical orthogonal functions. 

EOFs can be used in both the time and frequency domains. For now, we will restrict 
ourselves to the time domain application and consider a series of N maps at times t - 
ti (1 < i <_ N), each map consisting of scalar variables ~m(t) collected at M locations, 
Xm(1 < m <_ M). One could think of N weather maps available every 6 h over a total 
period of 6N h, with each map showing the sea surface pressure 
~m(t)--Pro(t)(1 <_ m <_ M) recorded at M weather buoys located at mooring sites X m 

= (Xm, ym). Clearly, the subscript m refers to the spatial grid locations in each map. 
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Alternatively, the N maps might consist of pressure data P(t) from M -  K weather 
buoys plus velocity component records u(t), v(t) from K/2 current meter sites. Or, 
again the time series could be from M/2 current meters on a moored string. Any 
combination of scalars is permitted (remember, this is a statistical analysis not a 
dynamical analysis). The goal of this procedure is to write the data series ~m(t) at any 
given location Xm as the sum of M orthogonal spatial functions (/)i(Xm) = ~im such that 

M 

~(xm, t) - ~m(t) -- Z [ai(t)dPiml (4.3.1) 
i=1 

where ai(t) is the amplitude of the ith orthogonal mode at time t - tn (1 <_ n _< N). 
Simply put, equation (4.3.1) says that the time variation of the dependent scalar 
variable ~(x,,,, t) at each location Xm results from the linear combination of M spatial 
functions, 4~i, whose amplitudes are weighted by M time-dependent coefficients, ai(t), 
(1 _< i _< M). The weights ai(t) tell us how the spatial modes Oim vary with time. There 
are as many (M) basis functions as there are stations for which we have data. Put 
another way, we need as many modes as we have time-series stations so that we can 
account for the combined variance in the original time series at each time, t. We can 
also formulate the problem as M temporal functions whose amplitudes are weighted 
by M spatially variable coefficients. Whether  we partition the data as spatial or 
temporal orthogonal functions the results are identical. 

Since we want the ~i(Xm) tO be orthogonal, so that they form a set of basis functions, 
we require 

M 
Z [Oim~jm] -- ~ij (orthogonality condition) (4.3.2) 
m---- 1 

where the summation is over all observation locations and 6ij is the Kronecker delta 

1, j = i (4.3.3) 
6~j- O, j r  

It is worth remarking that two functions are said to be orthogonal when the sum (or 
integral) of their product over a certain defined space (or time) is zero. Orthogonality 
in equation (4.3.2) does not m e a n  Oim~)jm = 0 for each m. For example, in the case of 
continuous sines and cosines, f sin 0 cos 0 dO = 0 when the integral is over a complete 
phase cycle, 0 < 0 < 27r. By itself, the product sin 0. cos0 - 0  only if the sine or 
cosine term happens to be zero. 

There is a multi tude of basis functions, 4~i, that can satisfy equations (4.3.1) and 
(4.3.2). Sine, cosine, and Bessel functions come to mind. The EOFs are determined 
uniquely among the many possible choices by the constraint that the time amplitudes 
ai(t) are uncorrelated over the sample data. This requirement means that the time- 
averaged covariance of the amplitudes satisfies 

ai(t)aj(t) = Ai6ij (uncorrelated time variability) (4.3.4) 

in which the overbar denotes the time-averaged value and 

1~-~ [ai(tn)2 ] /~i -- ai(t) 2 - N n = l  (4.3.5) 

is the variance in each orthogonal mode. If we then form the covariance matrix 
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~bm(t)~pk(t) for the known data and use (4.3.4), we find 

M M 

~m(t)~k(t) = ~ ~ [ai(t)aj(t)dpimdpjk] 
i=1 j=l  

M 

~ [)kidPimdPik] 
i=1 

(4.3.6) 

Multiplying both sides of (4.3.6) by dPik, summing over all k and using the ortho- 
gonality condition (4.3.2), yields 

M 
~bm(t)~bk(t)Chik = .~i~im (ith mode at the ruth location; i, m - 1,..., M) 

k=l 
(4.3.7) 

Equation (4.3.7) is the canonical form for the eigenvalue problem. Here, the EOFs, dPim, 
are the ith eigenvectors at locations Xm, and the mean-square time amplitudes 

)ki--ai(t) 2 

are the corresponding eigenvalues of the mean product, R, which has elements 

R,nk -- ~bm(t)~bk(t) 

This is equal to the covariance matrix, C, if the mean values of the time series ~m(t) 
have been removed at each site Xm. The total of M empirical orthogonal functions 
corresponding to the M eigenvalues of (4.3.7) forms a complete basis set of linearly 
independent (orthogonal) functions such that the EOFs are uncorrelated modes of 
variability. Assuming that the record means ~m(t) have been removed from each of the 
M time series, equation (4.3.7) can be written more concisely in matrix notation as 

C $  - AI$ = 0 (4.3.8) 

where the covariance matrix, C, consists of M data series of length N with elements 

Cmk = ~m(t)~bh(t) 

I is the unity matrix, and ~ are the EOFs. Expanding (4.3.8) yields the eigenvalue 
problem 

if31 ( l )@l (t)  if31 (t)~P2 (t) 
~b2-(t~l (t) ~2(t)~P2(t) 

~M(t)~l (t) ~M(t)~z(t)  

�9 .. ~Pi (t)~M(t) c~1 A 0 ... 0 ~1 
... ~bz(t)~M(t) ~b2 _ 0 A 0 4~2 (4.3.9a 
. . . . . .  �9 . . . . . . .  

�9 .. ~M(t)~M(t) CbM 0 A C~M 

corresponding to the series of linear system of equations 

[~bl (t)~Pl (t) - A] 4~1 + ~l (t)~P2(t) 02 + ... + ~l (t)~M(t) C~M = 0 

[~2(t)~2(t) -- A] 0 2  -a t- . . .  ~ ~b2(t)~M(t)OM ~ 2 ( t ) ~ l  (t) r + 0 

, , .  

~M(t)~l (t) c~l + ~M(t)~z(t) r + ... + [~M(t)~PM(t) -- A] 0M -- 0 
k J 

(4.3.9b) 
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The eigenvalue problem involves diagonalization of a matrix, which in turn amounts 
to finding an axis orientation in M-space for which there are no off-diagonal terms in 
the matrix. When this occurs, the different modes of the system are orthogonal. Since 
each C is a real symmetric matrix, the eigenvalues Ai are real. Similarly, the eigen- 
vectors (EOFs) of a real symmetric matrix are real. Because C(xm, xk) is positive, the 
real eigenvalues are all positive. 

If equation (4.3.8) is to have a nontrivial solution, the determinant of the coef- 
ficients must vanish; that is 

det 

C l l - A  C12 

C21 C 2 2 - A  

Cml . . . . . .  

C1M 
~ 1 7 6 1 7 6  

~ 1 7 6 1 7 6  

CMM--A 

= 0  (4.3.10) 

which yields an Mth order polynomial, A M + c~A M-1 + ..., whose M eigenvalues satisfy 

AI > A2 > ... > AM (4.3.11) 

Thus, the "energy" (variance) associated with each statistical mode is ordered accord- 
ing to its corresponding eigenvector. The first mode contains the highest percentage of 
the total variance, A~; of the remaining variance, the greatest percentage is in the 
second mode, A2, and so on. If we add up the total variance in all the time series, we get 

Z Z[ffgm(tn)] 2 = Aj 
m=l n=l j=l 

Sum of variances in data - s u m  of variance in eigenvalues (4.3.12) 

The total variance in the M time series equals the total variance contained in the M 
statistical modes. The final piece of the puzzle is to derive the time-dependent 
amplitudes of the ith statistical mode 

M 

ai(t) = Z ~bm(t)Cbim (4.3.13) 
m=l 

Equation (4.3.7) provides a computational procedure for finding the EOFs. By 
computing the mean product matrix, ~Pm(t)~bk(t) (m,k = 1, ...,M) or "scatter matrix" S 
in the terminology of Preisendorfer (1988), the eigenvalues and eigenvectors can be 
determined using standard computer algorithms. From these, we obtain the variance 
associated with each mode, Aj, and its time-dependent variability, ai(t). 

As outlined by Davis (1976), two advantages of a statistical EOF description of the 
data are: (1) the EOFs provide the most efficient method of compressing the data; and 
(2) the EOFs may be regarded as uncorrelated (i.e. orthogonal) modes of variability of 
the data field. The EOFs are the most efficient data representation in the sense that, 
for a fixed number of functions (trigonometric or other), no other approximate 
expansion of the data field in terms of K < M functions 

K 
~m(t) - Z ai(t)~im (4.3.14) 

m=l 
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can produce a lower total mean-square error 

K 

Z [ ~ m ( t ) - ~ m ( t ) ]  2 (4.3.15) 
m=l 

than would be obtained when the q~i are the EOFs. A proof of this is given in Davis 
(1976). Also, as we will discuss later in this section, we could just as easily have written 
our data ~(xm, t) as a combination of orthogonal temporal modes Oi(t) whose ampli- 
tudes vary spatially as ai(x~). Since this is a statistical technique, it doesn't matter 
whether we use time or space to form the basis functions. However, it might be easier 
to think in terms of spatial orthogonal modes that oscillate with time. 

As noted above, EOFs are ordered by decreasing eigenvalue so that, among the 
EOFs, the first mode, having the largest eigenvalue, accounts for most of the variance 
of the data. Thus, with the inherent efficiency of this statistical description a very few 
empirical modes generally can be used to describe the fundamental variability in a very 
large data set. Often it may prove useful to employ the EOFs as a filter to eliminate 
unwanted scales of variability. A limited number of the first few EOFs (those with the 
largest eigenvalues) can be used to reconstruct the data field, thereby eliminating those 
scales of variability not coherent over the data grid and therefore less energetic in their 
contribution to the data variance. An EOF analysis can then be made of the filtered 
data set to provide a new apportionment of the variance for those scales associated with 
most of the variability in the original data set. In this application, EOF analysis is 
much like standard Fourier analysis used to filter out scales of unwanted variability. In 
fact, for homogeneous time series sampled at evenly spaced increments, it can be 
shown that the EOFs are Fourier trigonometric functions. 

The computation of the eigenfunctions ai(t) in equation (4.3.13) requires the data 
values ~m(t) for all of the time series. Often these time series contain gaps which make 
it impossible to compute ai(t) at those times for which the data are missing. One 
solution to this problem is to fill the gaps in the original data records using one of the 
procedures discussed in the previous chapter on interpolation. Most consistent with 
the present approach is to use objective analysis as discussed in the preceding section. 
While this will provide an interpolation consistent with the covariance of the subject 
data set, these optimally estimated values of ~m (t) often result in large expected errors 
if the gaps are large or the scales of coherent variability are small. 

An alternative method, suggested by Davis (1976), that can lead to a smaller 
expected error is to estimate the EOF amplitude at time, t, directly from the existing 
values of ~m(t) thus eliminating the need for the interpolation of the original data. 
Conditions for this procedure are that the available number of sample data pairs is 
reasonably large (gaps do not dominate) and that the data time series are stationary. 
Under these conditions, the mean product matrix ~m(t)~k(t) (m, k - 1, ..., M) will be 
approximately the same as it would have been for a data set without gaps. For times 
when none of the ~m(t) values are missing, the coefficients ai(t) can be computed from 
equation (4.3.13). For times t when data values are missing, ai(t) can be estimated from 
the available values of ~ ( t )  

M ! 

cti(t) -- bi(t) Z ~j(t)Oij (4.3.16) 
j= l  

where the summation over j includes only the available data points, M' < M. From 
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equations (4.3.8), (4.3.14), and (4.3.16), the expected square error of this estimate is 

M ! 

[ai(t)- a(t)] 2 -  b ~ ( t ) Z  (AjT){) + Ai[1 + bi(t)(Tii-1)] 2 (4.3.17) 
j=l 

where 

~ji -- Z ~pj(k)~i(k) (4.3.18) 
k 

and the summation over k applies only to those variables with missing data. Taking 
the derivative of the right-hand side of (4.3.17) with respect to bi, we find that the 
expected square error is minimized when 

bi(t) - (1-'),ii)/~j/I(1-"fii)2)~j-+-~j ,~j'y 2] (4.3.19) 

Applications of this procedure (Davis, 1976, 1978; Chelton and Davis, 1982, Chelton et 
al., 1982), have shown that the expected errors are surprisingly small even when the 
number of missing data is relatively large. This is because the dominant EOFs in 
geophysical systems generally exhibit large spatial scales of variability, leading to a 
high coherence between grid values. As a consequence, contributions to the spatial 
pattern from the most dominant EOFs at any particular time, t, can be reliably 
estimated using a relatively small number of sample grid points. 

4.3.1 Principal axes of a single vector time series (scatter plot) 

A common technique for improving the EOF analysis for a set of vector time series is 
to first rotate each data series along its own customized principal axes. In this new 
coordinate system, most of the variance is associated with a major axis and the 
remaining variance with a minor axis. The technique also provides a useful appli- 
cation of principal component analysis. The problem consists of finding the principal 
axes of variance along which the variance in the observed velocity fluctuations 
u'(t) = [u'l(t ), u~(t)] is maximized for a given location; here u' 1 and u~ are the 
respective east-west and north-south components of the wind or current velocity 
obtained by removing the respective means ~ and fi5 from each record; i.e. 
u' 1 - u l -  ~ ,  u' 2 = u2-  ~ .  The amount of data "scatter" is a maximum along the 
major axis and a minimum along the minor axis (Figure 4.3.1). We also note that 
principal axes are defined in such a way that the velocity components along the 
principal axes are uncorrelated. 

The eigenvalue problem (4.3.8) for a two-dimensional scatter plot has the form 

CII C21 
C12 C22 

qS1 
~2 

A 0 
0 A 

qS1 
~2 

(4.3.20) 

where the C o are components of the covariance matrix, C, and (4~x, q)2) are the 
eigenvectors associated with the two possible values of the eigenvalues, A. To find the 

! ! principal axes for the scatter plot of u 2 versus u 1, we set the determinant of the co- 
variance matrix equation (4.3.20) to zero 
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Figure 4.3.1. The principal component axes for daily averaged velocity components u, v measured by a 
current meter moored at 175 m depth on the west coast of Canada. Here, the north-south component oJ 
velocity, v(t), is plotted as a scatter diagram against the east-west component of current velocity, u(t). 
Data cover the period 21 October 1992 to 25 May 1993. The major axis along 340~ can be used to 

define the longshore direction, v'. 

det{ C - A I [  - det 

= det 

C I ~ - A  C12 

C21 C22-)k  

'2 t t 
U 1 -- A UlU 2 

t t '2 
u2u ~ u 2 - A 

= 0  

(4.3.21a) 

where (for i - 1, 2) the elements of the determinant are given by 

,2 1~-~ 2 
Cii - u i ~ [ui(tn) ] 

n=l 

1 L [  t I(tn)] t t __ bliblj 
C i j  - -  U ibl ) N n = l  

(4.3.21b) 

(4.3.21c) 

Solution of (4.3.21) yields the quadratic equation 

-- [~12 7 7 2 ] A +  '2 '2 ..-JTT..~2_ 0 A 2 -b-U 2 U 1 bl 2 - - U l U  2 (4.3.22) 

whose two roots A1 > A2 are the eigenvalues, corresponding to the variances of the 
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velocity fluctuations along the major and minor principal axes. The orientations of the 
two axes differ by 90 ~ and the principal angles Op (those along which the sum of the 

l I squares of the normal distances to the data points u~, u 2 are extremum) are found from 
the transcendental relation 

tan (20p) - 2__ -u'lu-~ (4.3.23a) uf _u 2 

or 

. .-?7-ST..t 
1 -1 [ 2UlU2 ] (4.3.23b) 

Op - ~tan Lu72_u722 J 

where the principal angle is defined for the range - r r /2  _< Op _< rr/2 (Freeland et al., 
1975; Kundu and Allen, 1976; Preisendorfer, 1988). As usual, the multiple nrr/2 
ambiguities in the angle that one obtains from the arctangent function must be 
addressed by considering the quantrants of the numerator and denominator in 
equation (4.3.23). Preisendorfer (1988; Figure 2.3) outlines the nine different possible 
cases. Proof of (4.3.23) is given in Section 4.3.5. 

The principal variances (A1, A2) of the data set are found from the determinant 
relations (4.3.21a) and (4.3.22) as 

A] 1 (~12 + ~22) -4- (~12 -- ~22) +4(UlU"7"'~) 2 
A2 - - 2  

(4.3.24) 

in which the + sign is used for A1 and the - sign for A2. In the case of current velocity 
records, A1 gives the variance of the flow along the major axis and A2 the variance 
along the minor axis. The slope, s l -  g52/~51, of the eigenvector associated with the 
variance A1 is found from the matrix relation 

' 2  t t 
U 1 -- A //1/12 ~1 -- 0 (4.3 25a) 

t 2 U~Utl U2 -- A ~52 

Solving (4.3.25a) for A -  A1, gives 

[d12-  ,~1]~1 q-UtlU~ ~52--0 

..-7-7?..t [gzUl (~11 + [U'--~2 2 -- "~1] ~2---0 
(4.3.25b) 

so that 

[ ' '  S1 = A1 -- /UlU 2 (4.3.25c) 

with a similar expression ~f~ __the slope s2__ associated with the variance 
,2/.., ~., The usefulness of principal A -  A2. If A1 >> A2, then A1 ~ u '2 + u'22, and sl ~ ,  2/UlU 2- 

c o m p o n e n t  analysis is that it can be used to find the main orientation of fluid flow at 
any current meter or anemometer site, or within a "box" containing velocity variances 
derived from Lagrangian drifter trajectories (Figure 4.3.2). Since the mean and low 
frequency currents in relatively shallow waters are generally "steered" parallel to the 
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Figure 4.3.2. Principal axes of current velocity variance (kinetic energy) obtained from surface satellite- 
tracked drifter measurements off the coast of southern California during 1985-86. For this analysis, data 
have been binned into 200 • 200 km 2 boxes Solid border denotes the region for which there were more 

than 50 drifter-days and more than two different drifter tracks. (From Poulain and Niiler, 1989). 

coastline or local bottom contours, the major principal axis is often used to define the 
"longshore" direction while the minor axis defines the "cross-shore" direction of the 
flow. It is this type of information that is vital to estimates of cross-shore flux 
estimates. In the case of prevailing coastal winds, the major axis usually parallels the 
mean orientation of the coastline or coastal mountain range that steers the surface 
winds. 

4 . 3 . 2  E O F  c o m p u t a t i o n  u s i n g  t h e  s c a t t e r  m a t r i x  m e t h o d  

There are two primary methods for computing the EOFs for a grid of time series of 
observations. These are: (1) The scatter matrix method which uses a "brute force" 
computational technique to obtain a symmetric covariance matrix C which is then 
decomposed into eigenvalues and eigenvectors using standard computer algorithms 
(Preisendorfer, 1988); and (2) the computationally efficient singular value 
decomposition (SVD) method which derives all the components of the EOF analysis 
(eigenvectors, eigenvalues, and time-varying amplitudes) without computation of the 
covariance matrix (Kelly, 1988). The EOFs determined by the two methods are 
identical. The differences are mainly the greater degree of sophistication, compu- 
tational speed, and computational stability of the SVD approach. 

Details of the covariance matrix approach can be found in Preisendorfer (1988). 
This recipe, which is only one of several possible procedures that can be applied, 
involves the preparation of the data and the solution of equation (4.3.8) as follows: 
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(1) Ensure that the start and end times for all M time series of length N are identical. 
Typically, N > M. 

(2) Remove the record mean and linear trend from each time-series record 
~m(t), I <_m <_M, such that the fluctuations of ~m(t) are given by 
~m(t) = ~m( t ) -  [~m (t) + bin (t - -{)] where bm is the slope of the least-squares 
regression line for each location. Other types of trend can also be removed. 

(3) Normalize each de-meaned, de-trended time series by dividing each data series by 
its standard deviation s - [1/(N - 1) ~'~(~m,)2] 1/2 where  the summation is over all 
time, t (tn" 1 <_ n <_ N). This ensures that the variance from no one station 
dominates the analysis (all stations get an equal chance to contribute). The M 
normalized time-series fluctuations, ~'m, are the data series we use for the EOF 
analysis. The total variance for each of the M eigenvalues = 1; thus, the total 
variance for all modes, ~ A i -  M. 

(4) Rotate any vector time series to its principal axes. Although this operation is not 
imperative, it helps maximize the signal-to-noise ratio for the preferred direction. 
For future reference, keep track of the means, trends and standard deviations 
derived from the M time series records. 

(5) Construct the M • N data matrix, D, using the M rows (locations Xm) and N 
columns (times tn) of the normalized data series 

D 

Time -~ 

~ll (t l)  if/1 ( t 2 ) . . .  ~tl(tN ) 
~ ( t l )  ~b I 2(t2) "'" ~t2(tN) Location 

~ ( t l )  ~ ( t 2 ) . . .  ~M(tN) 

(4.3.26) 

and from this derive the symmetric covariance matrix, C, by multiplying D by its 
transpose D T 

C = 1 D D  T (4.3.27) 
N4~4~- 1 

where S = ( N - 1 ) C  is the scatter matrix defined by Preisendorfer (1988), and 

C m 

Cll C12 ... C1M 

C21 C22 ... C2M 

CM1 . . . . . .  CMM 

The elements of the real symmetric matrix C are 

l ~ [~ i ( t , )~ ( tn ) ]  
Cij - Cji = N - 1 n=l 

The eigenvalue problem then becomes 

c ~ , -  ~ ,  

where A are the eigenvalues and ~ the eigenvectors. 

(4.3.28) 

(4.3.29) 

(4.3.30) 
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At this point, we remark that we have formulated the EOF decomposition in terms 
of an M • M "spatial" covariance matrix whose time-averaged elements are given by 
the product (N - 1)-  1 DD r (4.3.27). We could just as easily have formed an N • N 
"temporal" covariance matrix whose spatially averaged elements are given by the 
product (M - 1)- 1 DTD. The mean values we remove in preparing the two data sets 
are slightly different since preparation of D involves time averages while preparation 
of D T involves spatial averages. However, in principle, the two problems are identical, 
and the percentage of the total time-series variance in each mode depends on whether 
one computes the spatial EOFs or temporal EOFs. As we further point out in the 
following section, another difference between the two problems is how the singular 
values are grouped and which is identified with the spatial function and which with 
the temporal function (Kelly, 1988). The designation of one set of orthogonal vectors 
as EOFs and the other as amplitudes is quite arbitrary. 

Once the matrix C has been calculated from the data, the problem can be solved 
using "canned" programs from one of the standard statistical or mathematical 
computer libraries for the eigenvalues and eigenvectors of a real symmetric matrix. In 
deriving the values listed in Tables 4.3.1-4.3.6, we have used the double-precision 
program DEVLSF of the International Math and Science Library (IMSL). The 
program outputs the eigenvalues A in increasing order. To obtain A in decreasing 
order of importance, we have had to invert the eigenvalue output. For each eigen- 
vector or mode, the program normalizes all values to the maximum value for that 
mode. The amplitude of the maximum value is unity (= 1). Since there are M eigen- 
values, the data normalization process gives a total EOF variance of M(~--~ A i -  M). 
The canned programs also allow for calculation of a "performance index" (PI) which 
measures the error of the eigenvalue problem (4.3.30) relative to the various 
components of the problem and the machine precision. The performance of the 
eigenvalue routine is considered "excellent" if PI < 1, "good" if 1 <_ PI <_ 100, and 
"poor" if PI > 100. As a final analysis, we can conduct an orthogonality check on the 
EOFs by using the relation (4.3.2). Here we look for significant departures from zero 
in the products of different modes; if any of the products 

M 

Z [~im~Pjm] 
m=l 

Table 4.3.1. Data matrix D r. Components of velocity (cm/s) at three different sites at 1700 m depth in 
the northeast Pacific. Records start 29 September 1985 and are located near 48~ 129~ For each of 
the three stations we list the east-west (u) and north-south component (v). The means and trends have 
not yet been removed 

, , . . . . . . .  

Time Site 1 Site 1 Site 2 Site 2 Site 3 Site 3 
(days) (u 1) (v l) (u 2) (v2) (u 3) (v 3) 

1 - 0 . 3  0.0 0.4 - 0 . 4  - 0 . 8  - 1 . 4  
2 -0.1 0.3 0.4 -0.3 -1.1 0.0 
3 -0.1 -0.4 0.0 -0.5 0.0 -2.5 
4 0.2 0.6 0.0 -0.6 -0.7 0.4 
5 0.3 -0.1 -0.6 -0.3 0.0 -0.3 
6 0.5 0.0 0.9 -0.6 0.6 0.3 
7 0.2 0.2 -0.1 -0.7 1.2 -2.8 
8 -0.5 -0.9 0.0 -0.6 0.0 -1.8 

. . . . . . . . . . . . .  , . . . . .  L 
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Table 4.3.2. Means, standard deviations and trends for each of the time-series components for each of the 
three current meter sites listed in Table 4.3.1. Means and trends have been removed from the time series 
prior to calculation of the standard deviations 

Mean Standard deviation Trend 
Component  (cm/s) (cm/s) (cm/s/day) 

ul (east-west) 0.025 0.328 0.024 
vl (north-south)  - 0.037 0.418 - 0.075 
u2 (east-west) 0.125 0.433 - 0.038 
v2 (north-south)  - 0.500 0.114 - 0.040 
u3 (east-west) - 0.100 0.503 0.233 
v3 (north-south)  - 1.012 1.250 - 0.108 

Table 4.3.3. Principal axes for the current velocity at each site in Table 4.3.1. The angle ~ is measured 
counterclockwise from east. Axes (half) lengths are in cm/s 

Station ID Angle 0 (~ Major axis Minor axis 

Site 1 54.7 0.461 0.185 
Site 2 - 6.2 0.408 0.098 
Site 3 - 77.7 1.193 0.406 

Table 4.3.4. Eigenvalues and percentage of variance in each statistical mode derived from the data in 
Table 4.3.1 

Eigenvalue No. Eigenvalue Percentage 

1 2.2218 37.O 
2 1.7495 29.2 
3 1.1787 19.6 
4 O.6953 11.6 
5 0.1498 2.5 
6 0.0048 0.1 

Total 6.0000 100.0 

Table 4.3.5. Eigenvectors (EOFs) qSi for the data matrix in Table 4.3.1. Modes are normalized to the 
maximum value for each mode 

Station Mode Mode Mode Mode Mode Mode 
ID 1 2 3 4 5 6 

Site 1 u l 1.000 - 0.032 - 0.430 0.479 - 0.599 - 0.969 
Site 1 v~ 0.958 -0 .078  - 0 . 1 6 2  - 0 . 9 6 6  1.000 0.085 
Site 2 u2 0.405 0.230 1.000 0.910 0.517 -0 .295  
Site 2 v2 - 0.329 - 0.898 - 0.525 1.000 0.784 - 0.111 
Site 3 u3 0.349 1.000 - 0 . 4 7 4  0.812 0.124 0.907 
Site 3 v3 0.654 - 0 . 9 6 4  0.263 0.190 -0 .5 3 9  1.000 

are s i g n i f i c a n t l y  d i f f e ren t  f rom zero for i ~ j ,  t hen  the  E O F s  are not  o r t h o g o n a l  and 
the re  are  e r ro r s  in the  c o m p u t a t i o n .  A c o m p u t a t i o n a l  e x a m p l e  is g iven  in Sec t ion  

4.3.4. 
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Table 4.3.6. Time series of the amplitudes, ai(t), for each of the statistical modes 

Mode Mode Mode Mode Mode Mode 
Time 1 2 3 4 5 6 

Day 1 0 .798 -0.773 0.488 0.089 0.091 0.124 
Day 2 - 0.076 1.258 0.402 0.126 0.595 - 0.089 
Day 3 1.153 - 1.582 -- 0.458 0.275 - 0.492 - 0.094 
Day 4 - 1.531 0.759 0.363 - 1.585 -0.382 0.000 
Day 5 0.097 1.647 - 2.099 0.509 - 0.128 0.039 
Day 6 - 2 .169  -0.142 1.084 1.296 -0.171 0.008 
Day 7 -0.721 - 1.921 -0.866 -0.534 0.503 0.004 
Day 8 2.450 0.754 1.085 -0.176 -0.017 0.008 

4.3.3 EOF computation using singular value decomposition 

The above method of computing EOFs requires use of covariance matrix, C. This 
becomes computationally impractical for large, regularly spaced data fields such as a 
sequence of infrared satellite images (Kelly, 1988). In this case, for a data matrix D 
over N time periods (N satellite images, for example), the covariance or mean product 
matrix is given by (4.3.27) 

1 D D  T (4.3.31) 
C = N ~ - I  

where D T is the transpose of the data matrix D. If we assume that all of the spatial 
data fields (i.e. satellite images) are independent samples, then the mean product 
matrix is the covariance matrix and the EOFs are again found by solving the 
eigenvalue problem 

C ~  = ~ A  (4.3.32) 

where + is the square matrix whose columns are eigenvectors and A is the diagonal 
matrix of eigenvalues. For satellite images, there may be M = 5000 spatial points 
sampled N = 50 times, making the covariance matrix a 5000 x 5000 matrix. Solving 
the eigenvalue problem for + would take max{O(M3), O(MN2)) operations. As 
pointed out by Kelly (1988), the operation count for the SVD method is O(MN 2) which 
represents a considerable savings in computations over the traditional EOF approach 
if M is large. This is primarily true for those cases where M, the number of locations in 
the spatial data matrix, D, are far greater than the number of temporal samples (i.e. 
images). 

There are two computational reasons for using the singular value decomposition 
method instead of the covariance matrix approach (Kelly, 1988): (1) The SVD 
formulation provides a one-step method for computing the various components of the 
eigenvalue problem; and (2) it is not necessary to compute or store a covariance matrix 
or other intermediate quantities. This greatly simplifies the computational require- 
ments and provides for the use of canned analysis programs for the EOFs. Our 
analysis is based on the double-precision program DLSVRR in the IMSL. The SVD 
method is based on the concept in linear algebra (Press et al., 1992) that any M x N 
matrix, D, whose number  of rows M is greater than or equal to its number of columns, 
N, can be written as the product of three matrices: an M x N column-orthogonal 
matrix, U, an N x N diagonal matrix, S, with positive or zero elements, and the 
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transpose (V T) of an N • N orthogonal matrix, V. In matrix notation, the SVD 
becomes: 

Sl 

D -  U s2 V r (4.3.33) 
~  

$N 

For oceanographic applications, the data matrix, D, consists of M rows (spatial points) 
and N columns (temporal samples). The scalars Sl _> s2 >_ ... >_ sN >_ 0 of the matrix S, 
called the singular values of D, appear in descending order of magnitude in the first N 
positions of the matrix. The columns of the matrix V are called the left singular 
vectors of D and the columns of the matrix U are called the right singular vectors of 
D. The matrix S has a diagonal upper N • N part, S', and a lower part of all zeros in 
the case when M > N. We can express these aspects of D in matrix notation by 
rewriting equation (4.3.33) in the form 

D -  [U]0] V r (4.3.34) 

where [UI0] denotes a left singular matrix and S' denotes the nonzero part of S which 
has zeros in the lower part of the matrix (Kelly, 1988). 

The matrix U is orthogonal, and the matrix V has only N significant columns which 
are mutually orthogonal such that, 

v T v -  I 
(4.3.35) 

u T u -  I 

Returning to equation (4.3.33), we can compute the eigenvectors, eigenvalues and 
eigenfunctions of the principal component analysis in one single step. To do this, we 
prepare the data as before following steps 1-5 in Section 4.3.2. We then use com- 
mercially available programs such as the double-precision program DLSVRR in the 
IMSL. The elements of matrix U are the eigenvectors while those of matrix S are 
related to the eigenvalues Sl >_ s2 > ... >_ sN >_ O. To obtain the time-dependent 
amplitudes (eigenfunctions), we require a matrix A such that 

D - UA T (4.3.36) 

which, by comparison with equation (4.3.33), requires 

A = VS (4.3.37) 

Hence, the amplitudes are simply the eigenvectors of the transposed problem 
multiplied by the singular values, S. Solutions of (4.3.33) are identical (within round- 
off errors) to those obtained using the covariance matrix of the data, C. We again 
remark that the only difference between the matrices U and V is how the singular 
values are grouped and which is identified with the spatial function and which with 
the temporal function. The designation of U as EOFs and V as amplitudes is quite 
arbitrary. 

The decomposition of the data matrix D through singular value decomposition is 
possible since we can write it as a linear combination of functions Fi(x), i - 1, M so 
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D = Fc~ (4.3.38a) 

or 

D(Xl, tj) 
D(x2, tj) 

. . .  

D(x~, tj) 

F1 (Xl). . .FN(x1) Oil (tj) 
F~(x2) ...FN(x2) ~2(ti) 

FI (xN) .'.'. FN(xN) ~N(tj) 

(4.3.38b) 

where the Oli are functions of time only. The functions F are chosen to satisfy the 
orthogonality relationship 

F F  T = I (4.3.39) 

so that the data matrix D is divided into orthogonal modes 

D D  T - F a a r F  T - F L F  T (4.3.40) 

where L = aa T is a diagonal matrix. The separation of the modes arises from the 
diagonality of the L matrix, which occurs because DD T is a real and symmetric matrix 
and F a unitary matrix. To reduce sampling noise in the data matrix D, one would like 
to describe it with fewer than M functions. If D is approximated by D, which uses only 
K functions (K < M), then the K functions which best describe the D matrix in the 
sense that 

(D - D)T(D - D) 

is a minimum are the empirical orthogonal functions which correspond to the largest 
valued elements of the traditional EOFs found earlier. 

4.3.4 An example: deep currents near a mid-ocean ridge 

As an example of the different concepts presented in this section, we again consider 
the eight days of daily averaged currents (N = 8) at three deep current meter sites in 
the northeast Pacific near the Juan de Fuca Ridge (Table 4.3.1). Since each site has 
two components of velocity, M - 6. The data all start on the same day and have the 
same number of records. Following the five steps outlined in Section 4.3.2, we first 
removed the average value from each time series. We then calculated the standard 
deviation for each time series and used this to normalize the time series so that each 
normalized series has a variance of unity. For convenience, we write the transpose of 
the data matrix, DT, where columns are the pairs of components of velocity (u, v) and 
rows are the time in days. 

Time-series plots of the first three eigenmodes are presented in Figure 4.3.3. The 
performance index (PI) for the scatter matrix method was 0.026, which suggests that 
the matrix inversion in the eigenvalue solutions was well defined. A check on the 
orthogonality of the eigenvectors suggests that the singular value decomposition gave 
vectors which were slightly more orthogonal than the scatter matrix approach. For 
each combination ( i , ) )  of the orthogonality condition (4.3.2), the products 
Ei,j[t~imt~jm] were typically of order 10 -7 for the SVD method and 10 -6 for the 
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Figure 4.3.3. Eight-day time series for the first three EOFs for current meter data collected 
simultaneously at three sites at 1700 m depth in the northeast Pacific in the vicinity of Juan de Fuca 

Ridge, 1985. Modes 1, 2, 3 account for 37.0, 29.2, and 19.6 % of the variance, respectively. 
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scatter matrix method. Similar results apply to the orthogonality of the eigenmodes 
given by equation (4.3.4). 

Before closing this section, we remark that we also could have performed the above 
analysis using complex EOFs of the form 

~ ( t )  -urn( t )+ iVm(t) 

(where i - v/Z-l) in which case M = 3. This formulation not only allows the EOF 
vectors to change amplitude with time, as in our previous decomposition using 2M 
real EOFs, but also to rotate in time. 

4.3.5 Interpretation of EOFs 
In interpreting the meaning of EOFs, we need to keep in mind that, while EOFs offer 
the most efficient statistical compression of the data field, empirical modes do not 
necessarily correspond to true dynamical modes or modes of physical behavior. Often, 
a single physical process may be spread over more than one EOF. In other cases, more 
than one physical process may be contributing to the variance contained in a single 
EOF. The statistical construct derived from this procedure must be considered in light 
of accepted physical mechanisms rather than as physical modes themselves. It often is 
likely that the strong variability associated with the dominant modes is attributable to 
several identifiable physical mechanisms. Another possible clue to the physical 
mechanisms associated with the EOF patterns can be found in the time-series 
coefficients ai(t). Something may be known about the temporal variability of a process 
that might resemble the time series of the EOF coefficients, which would then suggest 
a causal relationship not readily apparent in the spatial structure of the EOF. 

One way to interpret EOFs is to imagine that we have displayed the data as a scatter 
diagram in an effort to discover if there is any inherent correlation among the values. 
For example, consider two parameters such as sea surface temperature (SST) and sea- 
level pressure (SLP) measured at a number  of points over the North Pacific. This is 
the problem studied by Davis (1976) where he analyzed sets of monthly SST and SLP 
over a period of 30 years for a grid in the North Pacific. If we plot x = SST against y - 
SLP in a scatter diagram, any correlation between the two would appear as an 
elliptical cluster of points. A more common example is that of Figure 4.3.1 where we 
plotted the north-south (y) component of daily mean current against the corres- 
ponding east-west (x) component for a continental shelf region. Here, the mean flow 
tends to parallel the coastline, so that the scatter plot again has an elliptical 
distribution. To take advantage of this correlation, we want to redefine our coordinate 
system by rotating x and y through the angle 0 to the principal axes representation 
x', y' discussed in Section 4.3.2. This transformation is given by 

x' = x cos 0 + y  sin 0 

y~ = - x  sin 0 + y  cos 0 
(4.3.41) 

What we have done in this rotation is to formulate a new set of axes that explains most 
of the variance, subject to the assumption that the variance does not change with time. 
Since the axes are orthogonal, the total variance will not change with rotation. Let 
V -  x '2 - N  -I ~ x  ~2 be the particular variance we want to maximize (as usual, the 
summation is over all time). Note that we have focused on x' whereas the total 
variance is actually determined by r 2, where r is the distance of each point from the 
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origin. However, we can expand r 2 = x 2 + y2 and associate the variance with a given 
coordinate. In other words, if we maximize the variance associated with x', we will 
minimize the variance associated with y'. Using our summation convention, we can 
write 

i 

V - x '2 - x --7 cos 20 + 2~-fly sin 0 cos 0 +y2 sin 2 0 (4.3.42) 

and 

OV _ 2(y- ~ ~ ) s i n 0 c o s 0  + 2~-ycos20 (4.3.43) 
O0 

We maximize (4.3.43) by setting O V / O 0 - O ,  giving (4.3.24), which we previously 
quoted without proof 

2 ~  
tan (20p) x2 _y2 (4.3.44) 

From (4.3.44), we see that if 

~-y << m a x ( ; , ; )  

then tan(20p) --, 0 and Op - 0 ,  or + 90 ~ and we are left with the original axes. If 
x 2 _y2 and x-fly r 0, then tan ( 2 0 p ) ~  +c~ and the new axes are rotated +45 ~ from 
the original axes. 

We now find the expression for V. Since sec2(20) - 1 + tan 2 (20) 

c o s 2 0 -  ( ; - v - 2 ~ / + D  \ --/ 
(4.3.45) 

sin 20 - [1 - cos 2 (20)] 1/2_ 2~-y/• D 

where 

O -  [ (x-2- - ~ )  2 +4x-yy2 
1/2 

(4.3.46) 

Then, using the identities 

COS 2t9 -- 1(1 + COS 20), sin 20 - 1(1 - cos 20) (4.3.47) 

we can write the variance as 

( 1 + cos 20p) + ~-7 ( 1 - cos 20p) x--- ~- V + sin 20i, 
2 " 2 

-- ~ { (x2 +y-2) • I (~- -- y-2) 2 +4~-~y21 1/2 } 
(4.3.48) 

The two roots of this equation correspond to a maximum and a minimum of V. For a 
new axis for which x '--7 is a maximum, we will find y,2 a minimum. This follows 
automatically from the fact that the total variance is conserved. However, we can 
confirm this mathematically by computing 02V/O02 - O .  From equation (4.3.43) we 
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02V/0{92 - -  2 ( y  ~- - ~ )  cos ( 2 0 p )  - 4~--yy sin (2Op) 

= - 2  [ (} -7 -y  7)  + 4k-fly] / + D  - +2D 
(4.3.49) 

The positive sign in equation (4.3.49) corresponds to a maximum (since (4.3.48) is 
negative); the negative sign corresponds to a minimum. It so happens that the 
variance solutions given by (4.3.49) are also the eigenvalues of the covariance matrix. 
Thus, we can return to our previous methods where we used the covariance matrix to 
compute the EOFs. 

A published example of EOF analysis is presented by Davis (1976) who examined 
monthly maps of SST and SLP for the years 1947-74. The SLP data were originally 
obtained from the Long-Range Prediction Group of the U.S. National Meteorological 
Center (NMC) as one-month averages on a 5 ~ diamond-shaped grid (i.e. 20~176 
20~176 . . . ,  25~176 25~176 etc.). The data were transferred to a 
regular 5~ grid using linear interpolation from the four nearest diamond grid 
points to fill in the square grid. The SST data were obtained from the U.S. National 
Marine Fisheries Service in the form of monthly averages over 2 ~ squares. Because 
this grid spacing is not a submultiple of 5 ~ and because sometimes data were missing, 
the following data analysis scheme was employed. The 2 ~ data were subjectively 
analyzed to produce maps contoured with a I~ contour interval. During this stage, 
missing values were filled in where feasible. The corrected values were then linearly 
interpolated onto a 1 ~ grid and 25 values were averaged to formulate area averages on 
the chosen 5 ~ grid coincident with the SLP data. The ship data originated as ship 
injection temperatures and are subject to all of the problems discussed earlier in the 
section on SST. 

Before carrying out the EOF analysis, the SST and SLP data sets were further 
averaged onto a grid with a 5 ~ latitude spacing and a 10 ~ longitude spacing (Figure 
4.3.4). In those cases where some SST values were missing, the available observations 
were used to compute the grid average. Even then there were some 5 ~ • 10 ~ regions 
with missing data in the SST fields. Both fields were then converted to anomalies 
using the mean of the 28oyear data set as the reference field. Thus, each of the 
individual monthly maps were transformed into anomaly maps, corresponding to the 
deviation of local values from the long-term mean. 
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Figure 4.3.4. The grid of sea surface temperature (SST) and sea-level pressure (SLP). The 10 ~ longitude 
by 5 ~ latitude SLP  averages are centered at grid intersections and S S T  averages are centered at crosses. 

(From Davis, 1976.) 
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Figure 4.3.6. The fraction of total sea surface temperature (circles, o) and sea-level pressure (triangles, 
/X) anomaly variance accounted for by the first M empirical orthogonal functions. (From Davis, 1976.) 

The standard deviations of both the SLP and SST anomaly fields are shown in 
Figure 4.3.5. It is interesting to note some of the basic differences between the 
variability of these two fields. The SLP field has its primary variability in the central 
northern part of the field just off the tip of the Aleutian Islands. Here, the Aleutian 
Low dominates the pressure field in winter and becomes the source of the main 
variability in the SLP data. In contrast, the SST field has near-uniform variance levels 
except in the Kuroshio Extension region off of northeast Japan where a maximum 
associated with advection from the Kuroshio is clearly evident. 
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To compute the EOFs from the anomaly fields, Davis (1976) used the covariance 
(scatter) matrix method presented in Section 4.3.2. The fraction of total variance 
accounted for by the EOFs for both the SST and SLP data is presented in Figure 4.3.6 
as a function of the number of EOFs. The steep slope of the SLP curve means that 
fewer SLP EOFs are needed to express the variance. The SST EOF level is consistently 
below that for the SLP EOF series. As a consequence, Davis presented only the first 
six SLP EOFs (labeled PI-P6 in Figure 4.3.7) but presented the first eight SST EOFs 
(labeled T1-T8 in Figure 4.3.8). The SLP EOFs exhibited fairly simple, large-scale 
patterns with P1 having the same basic shape as the SLP standard deviation (Figure 
4.3.5). The structural sequence for the first three SLP EOFs was: For P~, a single 
maximum; for P2, two meridionally separated maxima; and for P3, two zonally 
separated maxima. Higher modes appear to be combinations of these first three with 
an increasing number of smaller maxima. 

The SST maps obtained by Davis were considerably more complicated than the SLP 
maps, with large-scale patterns dominating only the first three modes of the 
temperature field. As with the SLP modes, the sequence seems to be from a central 
maximum (T1), to meridionally separated maxima (T2), and then to zonally separated 
maxima (T3). The higher-order EOFs have a number of smaller maxima with no 
simple structures. The overall scales are much shorter than those for the SLP EOFs. 
This turns out to be true for the time scales of the EOFs, with the SLP time scales 
being much shorter than those computed for the SST EOFs. 

The goal of the EOF analysis by Davis (1976) was to determine if there is some 
direct statistical connection between the SLP and SST anomaly fields. By using the 
EOF procedure he was able to present the primary modes of variability for both fields 
in the most compact form possible. This is the real advantage of the EOF procedure. 
In terms of the two anomaly fields, Davis found that there were connections between 
the variables. First, he found that SST anomalies could be predicted from earlier SST 
anomaly fields. This is a consequence of the persistence of individual SST patterns as 
well as the fact that some patterns appear to evolve from earlier patterns through 
advective processes. Davis also concluded that it was possible to specify the SLP 
anomaly on the basis of the coincident SST anomaly field. Finally, it was not possible 
to statistically predict the SST field from the simultaneous SLP field. These 
conclusions would have been difficult to arrive at without using the EOF procedure. 

4.3.6 Variations on conventional  EOF analysis 

Conventional principal component (EOF) analysis is limited by a number of factors 
including the dependence of the solution on the domain of analysis, the requirement 
for orthogonal spatial modes, and the lumping together of variability over all 
frequency bands. In addition, the method can detect standing waves but not 
progressive waves. Over the years, several authors have developed what might be 
called "variations" on the standard EOF theme. For the most part, the methods differ 
in the types of variances they insert into the algorithms used to determine the 
empirical orthogonal functions (principal components). Given that EOF analysis is a 
strictly statistical method, it is irrelevant how the variance is derived, provided that 
the type of variance used in the analysis is the same for all spatial locations. All that is 
required is that the matrix D, derived from statistical averages (such as the covariance, 
correlation and cross-covariance functions) of the gridded time series is a Hermitian 
matrix. 
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Departure from standard EOF analysis can have numerous forms. For example, one 
may choose to work in the frequency domain instead of the time domain by using 
spectral analysis to calculate the spectral "energy" density for specific frequency 
bands. In this case, the matrix D is complex, consisting of the cross-spectra between 
the gridded time series over a specific frequency band. The spectral densities 
represent the data variances which are used to determine the empirical orthogonal 
functions. Thus, the method is equally at home with variances obtained in the time or 
frequency domains. Regardless of variance-type, principal component methods are 
simply techniques for compressing the variability of the data set into the fewest 
possible number of modes. 

Returning to the time domain, suppose that we are examining the statistical 
structure of longshore wind and current fluctuations over the continental shelf and 
that we have reason to believe that current response to wind forcing is delayed by one 
or more time steps in the combined data series. A delay of half a pendulum day (~12 h 
at mid-latitudes) is not unreasonable. From a causal point of view, the best way to 
examine the EOF modes for the combined wind and current data is to first create new 
time series in which the wind records are lagged (shifted forward in time) relative to 
the current records. Suppose we want a delay of one time step. Then, longshore wind 
velocity values Vk(t~) at site k at times tj (/ - 2, 3, ...) get replaced with the earlier 
records at times tj_l. That is, Vk(tj)--~ Vk(tj-1)~-V~(tj), while the current record 
remains unchanged, vk(tj) -- v~(tj). The asterisk (*) denotes the new time series. 
Optimal empirical modes are those for which the wind and current records are 
properly "tuned" with the correct time lags. For large spatial regions with variable 
wind response times, this can get a little tricky so caution is advised. 

A departure from conventional EOF analysis was presented by Kundu and Allen 
(1976) who combined the zonal (u) and meridional (v) time series of currents into 
complex time series w = u + iv, where each scalar series is defined for times tj and 
locations Xk. The method was applied to current data collected during the Coastal 
Upwelling Experiment (CUE-II) off the Oregon coast in the summer of 1973. The 
complex covariance matrix obtained from these time series were then decomposed 
into complex eigenvectors by solving a standard complex eigenvalue problem. Unlike 
the scalar approach to the problem, this complex EOF technique can be used to 
describe rotary current variability within selected frequency bands. A further 
variation on conventional EOF analysis, which is related to complex EOF analysis, 
was provided by Denbo and Allen (1984). Using a technique we describe in Chapter 5, 
the current fluctuations in each of the time series (u, v) records collected during CUE- 
II were decomposed into clockwise (S +) and counterclockwise (S-) rotary spectra. The 
spectra (or variance per unit frequency range) for the dominant spectral components, 
which is typically S -  in the ocean, were then decomposed into empirical orthogonal 
functions by solving the standard complex eigenvalue problem. This rotary empirical 
orthogonal function analysis is best suited to flows with strong rotary signals such as 
continental shelf waves and near-inertial motions, but is not well suited to highly 
rectilinear flows such as those in tidal channels for which S + and S-  are of 
comparable amplitude (see Hsieh, 1986; Denbo and Allen, 1986). 

The first use of complex empirical orthogonal functions in the frequency domain was 
described by Wallace and Dickinson (1972) and subsequently used by Wallace (1972) 
to study long-wave propagation in the tropical atmosphere. Early oceanographic 
applications are provided by Hogg (1977) for long waves trapped along a continental 
rise and by Wang and Mooers (1977) for long, coastal trapped waves along a 
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continental margin. In this approach, complex eigenvectors are computed from the 
cross-spectral matrices for specified frequency bands. This is the most general 
technique for studying propagating wave phenomena. As noted by Horel (1984), 
however, EOF analysis in the frequency domain can be cumbersome if applied to time 
series in which the power of a principal component is spread over a wide range of 
frequencies as a result of nonstationarity in the data. Horel presents a version of 
complex EOF analysis in the time domain in which complex time series of a scalar 
variable are formed from the original time series and their Hilbert transforms. The 
complex eigenvectors are then determined from the cross-correlation or cross- 
covariance matrices derived from the complex time series. The Hilbert transform 

n(t) of the original time series Um(t) represents a filtering operation in which the U m 

amplitude of each spectral component remains unchanged but the phase of each 
component is shifted by 7r/2. Expanding the scalar time series 

urn(t) - ~ [am(co)cos (cot) + bm(co)sin (~t)] (4.3.50) 
O3 

n (t) is as a Fourier series over all frequencies, co, the Hilbert transform u m 

H u m (t) - ~ Ibm (co)cos (cot) - am(co)sin (a~t)] 
co 

(4.3.51) 

In practice, the Hilbert transform can be derived directly from the coefficients of the 
Fourier transform of u,~(t), although with the usual problems caused by aliasing and 
truncations effects. The complex covariance matrix rrnk = Um(t)U~(t)* obtained for the 
series Urn(t) = Urn(t) + iVm(t) and its complex conjugate, Uk(t)*, are shown to be useful 
for identifying traveling and standing wave modes; here, (u, v) are the zonal and 
meridional components of velocity. In the extreme case where the data set is 
dominated by a single frequency, the frequency domain EOF technique and complex 
time domain EOF technique are identical. According to Merrifield and Guza (1990), 
the Hilbert transform complex EOF only makes sense if the frequency distribution in 
the original time series u(t) is narrow band. 

In summary, conventional EOF analysis in the time domain works best when the 
variance is dominated by standing waves and spread over a wide range of frequencies 
and wavenumbers. Frequency domain EOF analysis should be used when the 
dominant variability within the data set is concentrated into narrow frequency bands. 
Rotary spectral EOF analysis is best used for data sets in which the variance is in 
narrow frequency bands and dominated by either the clockwise or counterclockwise 
rotating component of velocity. Complex time domain principal component analysis 
allows for the detection of propagating wave features (if the process has a narrow 
frequency band) and the identification of these motions in terms of their spatial and 
temporal behavior. However, regardless of which method is applied, the best test of a 
method's validity is whether the results make sense physically and whether the 
variability is readily visible in the raw time series. 
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4.4  N O R M A L  M O D E  A N A L Y S I S  

In the previous sections, we were concerned with the partition of data variance into an 
ordered set of spatial and temporal statistical modes. The eigenvalue problem 
associated with these EOF modes was solved without any consideration given to the 
underlying physics of the oceanic system. In contrast, normal mode decomposition 
takes into account the physics and associated boundary conditions of the fluid motion. 
A common approach is to separate the vertical and horizontal components of the 
motion and to isolate the forced component of the response from the freely 
propagating response. As illustrations of these techniques, we consider two basic types 
of normal mode, eigenvalue problem: 

(1) The calculation of vertical normal modes (eigenfunctions), ~k(Z), for a stratified, 
hydrostatic fluid with specified top and bottom boundary conditions; and 

(2) the derivation of the cross-shore orthogonal modes (eigenfunctions), Ck(X, z), for 
coastal-trapped waves over a variable depth, stratified ocean with or without a 
coastal boundary. 

The first problem can be solved without including the earth's rotation, f, while the 
second problem requires specification off. Both eigenvalue problems yield solutions 
only for certain eigenvalues, Ak, of the parameter, A. 

4.4.1 Vertical normal modes 

A common oceanographic problem is to find the amplitudes (ak) and phases (Ok) of a 
set o fK orthogonal basis functions, or modes, by fitting them to a profile of M (> K) 
observed values of amplitude and phase. For instance, one might have observations 
from M - 5 depths and want to find the modal parameters (ak, Ok) for the first three 
theoretical modes, k = 1, 2, 3, derived from an analysis of the equations of motion. 
Once the set of theoretical modes are derived, they can be fitted using a least-squares 
technique to observations of the along-channel current amplitude and phase. This 
yields the required estimates, (ak, Ok), for k = 1, 2, 3. 

To obtain the vertical normal modes for a nonrotating fluid ( f -  0), we assume that 
the pressure, p, density, p ,  and horizontal and vertical components of velocity (u, v) 
and w, respectively, can be separated into vertical and horizontal components. This 
separation of variables has the form 

O~ 

[u(x, t),v(x, t),p(x, t)/po] = ~Pk(X,Y ,  t)~k(Z) 
k=O 

(4.4.1a) 

w =  k(z) dz  

k=0 
- H  

(4.4.1b) 

d~k(Z) (4.4.1c) 
p= ~-~ Pk dz 

k=O 

where k = 0, 1, 2, ... is the vertical mode number and the variables without subscripts 
are functions of (x, t) - (x, y, t). Substituting these expressions into the usual 
equations of motion (see LeBlond and Mysak, 1979; Kundu, 1990), we obtain 
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d ( 1  ~__k) 1 
= 0 (4.4.2) 

where N(z)  - I - ( g / P )  dp/dz] 1/2 is the Brunt-V~iis~il~i frequency, r 2 is the separation 
constant and l/Ck 2 the eigenvalues, Ak. For a rotating fluid (f #- 0), we assume N(z) is 
uniform with depth and replace N Z / c k  2 in equation (4.4.2) as follows: 

N 2 / c  2 ~ (N 2 _ ~2)/ghk,  k - 1, 2, ... (4.4.3a) 

where hk is an "equivalent depth", w is the wave frequency 

ghk - -  (w 2 - f2) /(12 + q2) __ c~ -f2/12 (4.4.3b) 

and (l, q) are the wavenumbers in the horizontal (x,y) directions. Wave-like solutions 
are possible provided that f2 < w2 < N 2. For a rectangular channel of width L, the 
cross-channel wavenumber q ---+ qm -- mTT/L and solutions must be considered for both 
k, m = 1, 2, ... (Thomson and Huggett, 1980). For both the rotating and nonrotating 
case, solutions to the eigenvalue problem (4.4.2) are subject to specified boundary 
conditions at the seafloor (z = - H )  and the upper free surface (z - 0) of the fluid. 
These end-point boundary conditions are: 

dg'k 
dz 

--- 0 ( i . e .  w - 0 )  at  z - - H  (4.4.4a) 

d ~ k  N 2 0 p  
+ ~~kg -- 0 (i.e. ~ -- pgw) at z -- 0 (4.4.4b) 

Modal analysis of the type described by (4.4.2)-(4.4.4) is valid only for an inviscid 
hydrostatic fluid in which oscillations occur at frequencies much lower than the local 
buoyancy frequency, N, and for which the vertical length scale is much smaller than 
the horizontal length scale. In addition, the ocean must be of uniform depth and have 
no mean current shear. (For sloping bottoms, the horizontal cross-slope velocity 
component, u, is linked to the vertical boundary, w, through the bottom boundary 
condition u = - w  dH/dx  and separation of variables is not possible.) The method can 
be applied to an ocean with zero rotation or with rotation that changes linearly with 
latitude, y. Solutions to (4.4.2) are obtained for specified values of N(z) subject to the 
surface and bottom boundary conditions. Although the individual orthogonal modes 
propagate horizontally, the sum of a group of modes can propagate vertically if some 
of the modes are out of phase. 

Analytical solutions" Simple analytical solutions to the Sturm-Liouville equation are 
obtained with and without rotation when N = constant (density gradient constant 
with depth). Assuming the rigid lid condition (i.e. no surface gravity waves so that w 
- 0 at z - 0), the vertical shapes of the orthogonal eigenfunctions ~k(Z) in (4.4.2) are 
given by 

~k(Z) = cos (kTrz/H), k - 0, 1, 2, ... (4.4.5) 

where k - 0 is the depth-independent barotropic mode, and k - 1, 2, ... are the depth- 
dependent baroclinic modes. The kth mode has k zero crossings over the depth range 
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- H  _< z <_ 0 and satisfies the boundary conditions w - 0 (cf. 4.4.1b). Phase speeds 
(eigenvalues) of the modes are given by 

Co-  (gH) 1/2, k = 0 (barotropic mode) (4.4.6a) 

Ck -- NH/kTr, k - 1, 2, ... (baroclinic modes) (4.4.6b) 

In general, N(z) is nonuniform with depth and, for a given k, the solutions will have 
the form 

Ck --(ghk) 1/2 (4.4.7) 

where the "equivalent depth" hk is used in analogy with H in (4.4.6a). For an ocean of 
depth H ~ 2500 m and buoyancy frequency N ~ 2 • 10-3/s, the eigenvalue for the 
first baroclinic mode has a phase speed cl ~ 1.6 m/s and the equivalent depth 
h k -  c2/g ,~ 0.26m. For the 400-m deep tidal channel, we find N ~ 5 • 10 -3 m/s,  
cl ~ 0.8 m/s and hk ,~ 0.06 m. 

General solutions: To solve the general eigenvalue problem (4.4.2)-(4.4.4) for variable 
buoyancy frequency, N(z), we resort to numerical integration techniques for ordinary 
differential equations with two-point boundary conditions. That is, given the start and 
end values of the function ~/k(Z), and variable coefficient N(z) we seek values at all 
points within the domain ( - H  _< z _< 0). Fortunately, there exist numerous packaged 
programs for finding the eigenvectors and eigenvalues of the Sturm-Liouville 
equation for specified boundary conditions. The NAG routine D02KEF (Nag Library 
Routines, 1986) finds the eigenvalues and eigenfunctions (and their derivatives) of a 
regular singular second-order Sturm-Liouville system of the form 

(z) + G(z;  - 0 (4.4.8) 

together with boundary conditions 

ga2~flk(Za) -- ZalF(Za) d~k(Za) /dz  

Zb2~k(Zb) -- ZblF(Zb) dCk(Zb)/dz 

(4.4.9a) 
(4.4.9b) 

for real-valued functional coefficients F and G on a finite or infinite range, Z a < Z < Z b. 
Provision is made for discontinuities in F and G and their derivatives. The following 
conditions hold on the function coefficients: 

(1) The function F(z), which equals 1/N2(z) in the case of (4.4.2), must be nonzero 
and of one sign throughout the closed interval Za < z < Zb. This is certainly true in 
a stable oceanic environment where N 2 > 0, for N 2 < 0, the fluid is gravitationally 
unstable and vertical modes are not possible; 

(2) OG/OA must be of constant sign and nonzero throughout the interval Za < z < Zb 
and for all relevant values A, and must not be identically zero as z varies for any 
relevant value of A. 

Numerical  solutions to the Sturm-Liouville equation are obtained through a 
Pruefer transformation of the differential equations and a shooting method. (The 
shooting method and relaxation methods for the solution of two-point boundary value 
problems are described in Numerical Methods (Press et al., 1992)). The computed 
eigenvalues are correct to a certain error tolerance specified by the user. Eigen- 
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functions ~k(z) for the problem have increasing numbers of inflection points and zero 
crossings within the domain Za < Z < Zb as the eigenvalue increases. When the final 
estimate of Ak is found by the shooting method, the routine D02KEF integrates the 
differential equation once more using that value of Ak and with initial conditions 
chosen such that the integral 

Zb 

Za 
(4.4.10) 

is roughly unity. When G(z; A) is of the form Aw(z) + ~k(z), which is the most common 
case, Ik represents the square of the norm of ~kk induced by the inner product 

Zb 

ff2k(Z)~m(Z ) "-- / "  ~3k(Z)~flm(Z)W(Z) dg 
Za 

(4.4.11) 

with respect to which the eigenfunctions are mutually orthogonal if k -r m. This 
normalization of ~ for k = m is only approximate but typically differs from unity by 
only a few percent. 

If one is working with observed density (at) profiles for the region of interest, a 
useful approach is to solve the Sturm-Liouville equation using an analytical ex- 
pression for N(z) by fitting a curve of the type ot(z) = [p(z) - 11103 = Cro exp[a/(z + b)] 
or other exponential form, to the data. The eigen (modal) analysis is fairly insensitive 
to small changes in density so that, even though changes in N(z) are large in the upper 
oceanic layer, we usually can get away with a simple analytical curve fit. Alternatively, 
we can specify the actual density on a numerical grid for which modes are to be 
calculated. Once N(z) is available, we can use numerical methods to solve (4.4.2) 
subject to the boundary conditions (4.4.4), allowing for specified error bounds or 
degree of convergence on the final boundary estimate. Based on the analytical solu- 
tions (4.4.5), we can expect solutions ~kk to resemble cosine functions whose vertical 
structure has.been distorted by the nonuniform distribution of density along the 
vertical profile. There is a direct analogy here with the modes of oscillation of a taut 
string clamped at either end and having a nonuniform mass distribution along its 
length. 

The normal modes are normalized relative to their maximum value and then fitted 
to the data in a least-squares sense (Table 4.4.1). If there are M current meters on a 
mooring string, the maximum possible number of normal baroclinic modes is M -  1. 
By comparing the normal modes with the data, we can derive the absolute values of 
the barotropic mode and a maximum of M -  1 baroclinic modes. Solutions to the 
least-squares fitting are described in (Press et al., 1992). 

4.4.2 An example: normal modes of semidiurnal frequency 

Suppose that the along-axis semidiurnal currents, u, in a tidal channel have the form 
Um = am cos (wt + Om ), where am, Om (m = 1, . . . ,  M) are the observed current amplitude 
and phase, respectively. In terms of tidal current ellipses, we can think of u as the 
major axis of the current ellipse for each current meter on the mooring line. The 
oscillations have frequency w = wM2 corresponding to M2 semidiurnal tidal currents 
and the phase 0 is referenced to some time zone or meridian of longitude so that we 
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can intercompare values for different current meters and the surface tides. The values 
am, ~m for the different current  meter records can be determined using harmonic 
analysis techniques (Foreman, 1976) provided the measured data are at hourly 
intervals over a period of seven days or longer so that the M2 and K1 constituents are 
separable. We next rewrite the above expression for u in the usual way as 

2 2 2 Um -- Am COS (~ t )  + B m  sin (wt), where tan tgm -- A m / B i n  and a m - (A m + Bm). This 
allows us to examine the sine and cosine components separately. The observed 
magnitudes Am and Bm at each current meter depth Zm, m - 1, . . . ,  M are then used to 
compute the amplitudes and phases of the basis functions ~bk(zm), for a maximum of K 
different modes (K < M). At best, we can obtain the amplitudes and phases of the 
barotropic mode (k - 0) and up to M -  1 baroclinic modes. 

Details of the modal analysis at semidiurnal frequency using current meter data 
from a tidal channel are presented by Thomson and Huggett  (1980). The first step is to 
obtain an exponential functional fit (Figure 4.4.1a) to the observed mean density 
structure, N(z) .  This structure is then used with the local water depth H (assuming a 
flat bottom), the Coriolis parameter,  f, and the wave frequency, co, to calculate the 
theoretical dynamic modes (Figure 4.4.1b). A finite sum of these theoretical modes 
~Z) ~bk(z) is then least-squares fitted to the observed cosine component A m ( z  ) t o  obtain 
estimates of the contributions Ak from each mode, k. This operation is repeated for the 
sine component  B~. (Recall that the maximum total of barotropic plus baroclinic 
modes allowed in the summation is fewer than the number  of current meter records 
per mooring string and that the vertical structure of each mode is found through the 
products (Ak, Bk)~b~(z) where the coefficients are constant.) Using the relationships 
tan~k - A h / B k  and a~ - (A~ + B~), we get the amplitudes and phases of the various 
modes. In their analysis, Thomson and Huggett (1980) typically had only three 
reliable current  meter records per mooring string. Normally,  this would be enough to 
obtain the first two baroclinic modes. However, the bottom current meter in most 
instances was within a few meters of the bottom and therefore strongly affected by 
benthic boundary layer effects. To include a mode-2 solution in the estimates, the 
observed phase and amplitude of the bottom current meter record had to be adjusted 
for frictional effects via the added term e x p ( - z ' ) c o s ( w t + ~ - z ' ) ,  where 

Table 4.4.1. Modal amplitudes (cm/s) and phases (degrees relative to 120~ longitude)for Johnstone 
Strait M2 tidal currents computed from nine-day current meter records. Column 2 gives the number of 
current meters (M) on the string. The first column for the barotropic mode (ao, ~o) and each of the two 
baroclinic modes (a~, ~k), k = 1, 2, gives the amplitude and phase (a, ~) before and after the bottom 
current meter is included in the analysis. The bottom current is included after its amplitude and phase are 
corrected for bottom boundary layer friction. The vertical eddy viscosity Kv is that value which gives the 
minimum ratio between the first and second baroclinic modes when the frictionally corrected bottom 
current meter is included. NC means "no change", implying perfect modal fit for all depths with and 
without the bottom current meter record. At CM04, no near-surface current meter was deployed and the 
records were only five days long and therefore suspect 

K, Before After Before After Before After 
Site M (cm~' /s)  (ao,6~0) (ao, ~0) (al, ~91) (al, ~1) (a2, ~2) (a2, ~2) 

CM13 
CM14 
CM15 
CM02 
CM04 

3 15 42, 55 ~ 42, 55 ~ 12, 172 ~ 25, 171 ~ - 19, - 10 ~ 
3 8 35, 51 ~ 35, 51 ~ 11, 169 ~ 15, 171 ~ - 8, - 4  ~ 
3 13 32, 35 ~ 32, 36 ~ 18, 175 ~ 12, 166 ~ - 7, -31  ~ 
5 0 36, 42 ~ NC 21,220 ~ NC 9, 13 ~ NC 
4 7 29, 45 ~ 50, 24 ~ 13, 215 ~ 79, 174 ~ 2, - 3 4  ~ 70, 0 ~ 
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Figure 4.4.1. Baroclinic modes for semidiurnal frequency (~M2) in a uniformly rotating, uniform depth 
channel. (a) The mean density structure (o't) and corresponding buoyancy frequency N(z) used to 
calculate the eigenvalues; (b) Eigenvectors for the first three baroclinic modes. The barotropic mode (not 
plotted) has a magnitude of unity at all depths. Phase speeds for the modes fitted to the current meter 

data are cl ~ 34 cm/s; c2 ~ 20 cm/s. (From Thomson and Huggett, 1980.) 



350 Data Analysis Methods in Physical Oceanography 

z' - (z + H)/g, and ~5 ~ (2Kv/~) 1/2 is the boundary layer thickness for eddy viscosity 
Kv. Since Kv is not known a priori, the final solution required finding that value of Kv 
which minimized the ratio formed by the first mode calculated with and without the 
bottom current meter included in the analysis (Table 4.4.1). In the case where five 
current meters were available, Thomson and Huggett found that there was no 
difference in the value of the second mode estimate with and without inclusion of the 
bottom current meter record in the analysis, suggesting that the three-mode 
decomposition was representative of the actual current variability with depth. 

4.4.3 Coastal-trapped waves (CTWs) 

Stratified or nonstratified oceanic regions characterized by abrupt bottom topography 
adjacent to deeper regions of uniform depth support the propagation of trapped ocean 
waves with frequencies, ~, which are lower than the local inertial frequency, f. 
Trapped sub-inertial motions (~o < f )  typically are found along continental margins 
where the coastal boundary is bordered by a marked change in water depth consisting 
of a shallow (< 200 m) continental shelf, a steep continental slope, and a deep (> 
2000 m) weakly sloping continental rise. The longshore wavelengths vary from tens to 
thousands of kilometers while the cross-shore trapping scale is determined by the 
density structure and length scale of the topography. For baroclinic waves, the internal 
deformation radius r = N H / f  provides an estimate of the cross-shelf trapping scale while 
the stratification parameter S - ( N 2 m a x  H2max)/f2L 2 measures the importance of 
stratification for a shelf-slope region of width L. For a mid-latitude ocean of depth 
H ,~ 2500m and buoyancy frequency N ~ 2 x 10-3/s, we find r ~ 50 km. For wide 
shelves (L > 100 km), the motions are confined mainly to the continental slope, while 
for narrower shelf regions the motions extend to the coast where they "lean" up 
against the coastal boundary. For S >> 1 the CTWs are strongly baroclinic, while for 
S << I, they are mainly barotropic (Chapman, 1983). The case S ~ 1 corresponds to 
barotropic shelf waves modified by stratification. 

In addition to continental shelf regions, coastal-trapped waves can occur along mid- 
ocean ridges and in oceanic trenches (where they are known as trench waves), as well as 
around isolated seamounts. Phase propagation, in all cases, is with the coastal 
boundary to the right of the direction of propagation in the Northern Hemisphere and 
to the left of the direction of propagation in the Southern Hemisphere. For strongly 
baroclinic waves, energy propagation is always in the direction of phase propagation; 
for barotropic motions, short waves can propagate energy in the opposite direction to 
phase propagation. 

The general coastal-trapped wave solution consists of a Kelvin wave mode (k = 0), 
for which the cross-shore velocity component is identically zero at the coast (U - 0 at 
x - 0), together with a hierarchy of higher mode shelf waves (k - 1, 2, ... ) whose cross- 
shore velocity structures have increasing numbers of zero crossings (sign changes) 
normal to coast. The first shelf wave mode will have one zero crossing in elevation 
over the continental margin, the second mode will have two crossings, and so on. For 
the current component, U, the first mode shelf wave will have no zero crossing, the 
second mode will have one crossing, and so on. The condition of no normal flow 
through the coastal boundary requires U = 0 at x - 0. 

Computer programs that calculate the frequencies and cross-shore modal structure 
of coastal-trapped waves of specified wavelength are available in reports written by 
Brink and Chapman (1987) and Wilkin (1987). We confine ourselves to a general 
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outline of the programs for the interested reader. Practical difficulties with the 
numerical solutions to the equations are provided in these comprehensive reports. The 
programs of Brink and Chapman use linear wave dynamics in which the water depth, 
h(x), is assumed to be a function of the cross-shore coordinate, x, alone. Similarly, the 
buoyancy frequency, N(z), is a function of depth alone. The one profile that can be 
used in the analysis is best obtained by least-squares fitting a function (such as a 
polynomial or exponential) to a series of observed profiles. The wave parameters such 
as velocity, pressure and density are assumed to be sinusoidal in time (t) and 
longshore direction (y) such that for any particular wave parameter, ~, we have 

~(x, y, t) = ~o(x)exp[i(wt + ly)] (4.4.12) 

where ~ is the wave frequency and l is the alongshore wavenumber. This gives rise to a 
two-dimensional eigenvalue problem in (~, l) of the form 

Lifo(X; ~,/)] - 0 (4.4.13) 

where L is a linear operator. The problem is solved for arbitrary forcing and a fixed l. 
In particular, for a given wavenumer, k, the frequency w is varied until the algorithm 
finds the free-wave mode resonance. Resonance is defined as the frequency at which 
the square of the spatially integrated wave variable 

vc ~ 0 

o.,,- i 1,2 
0 0 - h  

(4.4.14) 

is at a maximum. The suite of programs tackle the following problems for which the 
user provides the bottom profile h (x), a mean flow profile (if needed) and a selection of 
boundary conditions" 

(1) The program BTCSW yields the dispersion curves ~ -  ~(l) (the frequency as a 
function ofwavenumber),  the cross-shore modal structure fo" ~elocity U(x) and/or 
surface elevation ~(x), and wind coupling coefficients fo, oarotropic coastal- 
trapped waves--including continental shelf waves and trench waves--for 
arbitrary topography and mean longshore current. Options for the long-wave 
and rigid-lid approximations are included in the program. The user can specify 
one of two geometries corresponding to topography with and without a coastal 
boundary. The outer boundary x = Xma,, is set as -2L,  where L is the width of the 
typographically varying domain in the cross-shore direction. Thus, about half the 
domain has a flat bottom. The outer boundary condition is specified as 
OU/Ox --0.  To obtain solutions for both ~ and U, the depth at the coast should 
be given a nonzero value h(0) > 1 m. 

(2) For wave frequencies ,~ _< 0.9f, the program BIGLOAD2 yields dispersion curves 
,J = ~o(l), the horizontal modal structure, and wind-coupling coefficients for an 
ocean with continuous, horizontally uniform stratification and arbitrary 
topography. Density in the model has the form p*(x, y, z, t) = po(Z)+ 
p(x,y, z, t), where po is background density and p is the density perturbation. 
Since p << po, the Boussinesq approximation is assumed throughout (i.e. density 
perturbations are ignored except where they multiply gravity, g, the acceleration 
due to gravity). The program allows for the component of the 13-effect normal to 
the coast and for both the free surface and rigid lid boundary conditions at the 
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(3) 

(4) 
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ocean surface. Solutions are obtained using the coordinate transformation 
0 - z / h ( x )  and assuming a linear bottom friction drag. A total of 17 vertical 
and 25 horizontal grids (rectangles) are generated so that the vertical resolution is 
much better near shore than in deep water. Problems with singularities are 
avoided by setting h(x) > 1 m at the coast, x - 0. The program does not work well 
when the shelf-slope width (or width of a trench at the base of the shelf) is small 
relative to the internal deformation radius for the first mode in the deep ocean. 
Spurious features appear in unexpected places and force the user to increase the 
density of horizontal grids over regions of rapidly varying topography. In 
addition, a spurious mode occurs in the pressure equation f o r / 3 -  0 at the local 
inertial frequency w - f ,  making the overall solution suspect. As noted by the 
authors, the user will have difficulty finding the barotropic Kelvin wave 
parameters. 
The program CROSS is used to find baroclinic coastal-trapped modes for w <_f 
for arbitrary stratification and uniform depth. 
The program BIGDRV2 is used to obtain the velocity, pressure, and density 
fluctuations over a continental shelf-slope region of arbitrary depth, stratification, 
and bottom friction and is driven by a longshore wind stress of the form 
r(x) - To exp [i(wt + ly)]. Specification of a linear friction coefficient of zero (r = 
0) results in a divide by zero error. As a result, inviscid solutions should not be 
attempted. As with (2), solutions are obtained on a 25 • 17 stretched grid. In 
practice, it is generally best to start a study of coastally trapped waves using 
BTCSW since it gives first-order insight into the type of modal structure one can 
expect. However, if the barotropic dispersion curves do not fit the data (e.g. 
observations reveal strong diurnal-period shelf waves but the first-mode 
dispersion curves consistently remain below the diurnal frequency band for 
realistic topography), then density and mean currents should be introduced using 
BIGLOAD2 and CROSS. 

The Brink and Chapman programs have been used by Crawford and Thomson 
(1984) to examine free wave propagation along the west coast of Canada and by 
Church et al. (1986) and Freeland et al. (1986) to examine wind-forced coastal-trapped 
waves along the southeast coast of Australia (Figure 4.4.2). In all cases, model results 
are compared with longshore sea-level records and current meter observations from 
cross-shore mooring lines. The cross-shore depth profiles h(x) and associated 
buoyancy frequencies N2(z) used in the Australian model are presented in Figures 
4.4.3(a, b). From these input parameters, the program was used to generate 
eigenvalues and eigenfunctions for the first three CTW wave modes (Figure 4.4.4) 
and the theoretical dispersion curves (Figure 4.4.5) relating wave frequency, w, to 
longshore wavenumber, I. The slopes of the (w, l) curves give the phase speeds ck for 
the given modes (k - 1, 2, 3) listed on the figure. 

Wilkin (1987) presents a series of FORTRAN programs for computing the fre- 
quencies and cross-shore modal structure of free coastal-trapped waves in a stratified, 
rotating channel with arbitrary bottom topography. The programs solve the linearized, 
inviscid, hydrostatic equations of motion using the Boussinesq approximation. The 
Brunt-V~is~l~ frequency N(z) is a function of the vertical coordinate only. As with 
Brink and Chapman (1987), the eigenvalue problem is solved using resonance iter- 
ation and finite difference equations. The cross-shore perturbation fields returned by 
the model include velocity, pressure, and density. The difference with Wilkin's model 
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Figure 4.4.2. Southwest coast of Australia showing the locations of the tide gauge stations (m) and 
current meter lines (0, 1, 2, 3) occupied during the Australian Coastal ~ Experiment (ACE). (From 

Freeland et al., 1986.) 

is that it uses a staggered horizontal (Arakawa "C") grid for which the usual hori- 
zontal Cartesian coordinates (x, y) have been mapped to orthogonal curvilinear co- 
o~ ina t e s  (~, 7/). Instead of using finite differencing, the vertical structures of the 
modes are determined through modified sigma coordinates with expansion of the field 
variables in terms of Chebyshev polynomials of the first kind. The program has the 
option of specifying wavenumber, l, and searching for the corresponding free wave 
frequency, w(l), as in Brink and Chapman, or specifying ~ and searching for l. For 
reasons explained by Wilkin, the model is designed to be compatible with the 
primitive equation ocean circulation model developed by Haidvogel et al. (1988). 

In the curvilinear coordinate system, a line element of length ds in the Wilkin 
model satisfies 

ds 2 - -  d x  2 + dy  2 = d(2 /dm 2 + dTlZ/dn 2 (4.4.15) 

and the metric coefficients m, n are defined by 

m - [(Ox/O~) 2 + (Oy/O~) 2] -1/2 

n - [(Ox/071) 2 + (Oy/OT/) 2] -1/2 

(4.4.16a) 

(4.4.16b) 
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Figure 4.4.4. The eigenfunctions U(x; z ) for  the first three baroclinic longshore current modes for the 
three lines in Figures 4.4.2 and parameters in Figure 4.4.3. The contouring is in arbitrary units. Phase 
speeds ck (eigenvalues) of each mode for each of the three lines also are shown. (From Church et al., 

1986.) 
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The velocity perturbations for time-dependent solutions of the form exp(-iwt) are 
then 

1( 
u --f2 _ 032  iwm -ff~ - f n  ~ (4.4.17a) 

1 ( O0 O0) 
V - - f 2  w 2 iwn-~q-fm--~ (4.4.17b) 

iw O0 
w - N20z  (4.4.17c) 

where (u, v, w) are the usual velocity components and 0 = P/po is the perturbation 
pressure. Solutions are then sought for the resulting pressure equation 

mn-~ ~ + - ) Oz -NZ-ffzz + mn-~ -~  - 0  (4.4.18) 

For a straight coastline, mO/O~ -- O/Ox and we arrive at the usual solutions for long- 
shore (x-direction) propagation of progressive waves of the form F(y)exp[i(Ix -wt)]. 

The Wilkin model is less general than the Brink and Chapman model in that 
application of the rigid-lid approximation does not allow for the barotropic (long- 
wave) Kelvin wave solution and a "slippery" solid wall is placed at the offshore 
boundary. The new vertical coordinate variable, ~ ,  is defined by 

cr = 1 + 2z/h(~7) (4.4.19) 

so that the ocean surface is located at cr = 1 and the (now flattened) seafloor at cr - -1 .  
Application of this model to the west coast of New Zealand (South Island) is presented 
by Cahill et al. (1991). Modes 1 and 2 of the longshore current for the northern portion 
of this region based on Wilkin's program CTWEIG are reproduced in Figure 4.4.6. 
Similar results for the southern region are presented in Figure 4.4.7. Notice that the 
coastal-trapped waves are nearly barotropic over the shallow shelf immediately 
seaward of the coast in both sections but are more baroclinic in the offshore region off 
the southwest coast. 

4.5 I N V E R S E  M E T H O D S  

4.5.1 General inverse theory 

General inverse methods have become a sophisticated analysis tool in the earth 
sciences. For example, in the field of geophysics, a goal of this technique is to infer the 
internal structure of the earth from the measurement of seismic waves. The essence of 
the geophysical inverse problem is to find an earth structure model which could have 
generated the observed acoustic travel-time data. This is in contrast to the forward 
problem which uses a known input and an understood physical system to predict the 
output. In the inverse problem, the input and output are known and the result is the 
model required to translate one set of data into the other. 

In oceanography, inverse methods are used for a variety of applications, including 
the inference of absolute ocean currents using known tracer distributions and 
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Figure 4.4.6. The longshore velocity structure of coastal-trapped waves for the northwestern shelf-slope 
region of South Island, New Zealand. (a) Mode 1; (b) Mode 2. Contour lines when multiplied by 10 -7 
correspond to the longshore velocities in m/s for unit energy flux in watts. Negative values are dashed. 

Current meter locations are given by the dots. (From Cahill et al., 1991.) 

geostrophic flow dynamics (Wunsch, 1978, 1988). Another application uses under- 
water acoustic travel times to determine the average temperature of the global ocean 
for long-term climate studies (Worchester et al., 1988). A study by Mackas et al. (1987) 
used inverse techniques to determine the origins and mixing of water masses off the 
coast of British Columbia. In these oceanographic applications, the "solutions" are 
what we previously called the "models" in the geophysical problem. The kernel 
functions are formulated from the physics of the problem in question and the result is 
found by matching the "solution" to the input data. A cursory look at the problem is 
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provided in this section. The interested reader is referred to Bennett (1992) for 
detailed insight into the theory and application of inverse methods in oceanography. 

In general, the inverse problem takes the form 

b 

e(t) = / C ( t ,  ()m(~) d~ 

a 

(4.5.1) 

where e(t) are the input data, m(~) is the model and C(t, ~) is the kernel function for 
the variable ~. The kernel functions are determined from the relevant physical 
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equations for the problem and are assumed to be known (Oldenburg, 1984). It is the 
judicious selection of these kernel functions that makes the inverse problem a comp- 
lex exercise requiring physical insight from the oceanographer. In order to extract 
information about the model, m({), we will restrict our consideration of inverse theory 
to linear inverse methods applied to a set of observations. This is referred to as "finite 
dimensional inverse theory" by Bennett (1992). In his discussion of this form of 
inverse theory, Bennett suggests that it applies to: 

(1) An incomplete ocean model, based on physical laws but possessing multiple 
solutions. 

(2) Measurements of quantities not included in the original model but related to the 
model by additional physical laws. 

(3) Inequality constraints on the model fields or the data. 
(4) Prior estimates of errors in the physical laws and the data. 
(5) Analysis of the level of information in the system of physical laws, measurements, 

and inequalities. 

Equation (4.5.1) is a Fredholm equation of the first kind. Inverse theory is centered 
around solving this equation in such a way as to extract information about the model, 
m({), when information is available for the data, e(t). It is important to realize that the 
inverse problem cannot be solved unless the physics and the geometry of the problem 
are known (i.e. equation (4.5.1) has been set up). It is, therefore, impossible to consider 
a solution to the inverse problem unless the forward problem can be solved. The 
physics of the forward problem may be ill-posed, in which case not all of the solutions 
will match or, if they do, it is a coincidence and not a solution to (4.5.1). Thus, the 
basic questions to ask regarding a solution of the inverse problem are: (1) Does a 
solution exist? In other words, is there an m({) which produces e(t)?; (2) How does one 
construct a solution?; (3) Is the solution unique?; and (4) How is the nonuniqueness 
appraised? 

The answers to the above questions will depend on the data, e(t). In theory, there 
exist three types of data: 

(1) An infinite amount of accurate data; 
(2) a finite amount of accurate data; 
(3) a finite amount of inaccurate data. 

In reality, only option (3) occurs as we are forced to work with observations which 
contain a variety of measurement and sampling errors. While perfect data are limited 
to the realm of the mathematical, it is often instructive to consider analytic "inverses". 
For example, the analytical inverse to 

xO r) - / x(t)e -i2~ft dt (4.5.2) 
j - i  

- - O C  

1 / ei2~r~ x(t)  = x(f )  dt (4.5.3) 

Similarly, the inverse of 
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~b(x)- 2 / A J  [re(r)/(r 2 --X2) 1/2] dr 
X 

(4.5.4) 

is 
a 

IId JdxlJlxi - r21 
r 

1/2] dx (4.5.5) 

In the second case, we require knowledge of d~b/dx to find e(r), which is easy to do for 
ideal continuous data (Figure 4.5.1a), or even for a finite sample of accurate data 
(Figure 4.5.1b). If, however, we have a finite sample of inaccurate data (Figure 4.5.1c), 
we have difficulty estimating d~b/dx. 
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r 

Figure 4.5.1. Three examples of the function r required for the inverse solution, c(r), of equation 
(4.5.5). Analytical (a) and digital (b) versions of r for which inversion is readily possible. (c) A typical 
"observed" version of r consisting of four mean values (plus standard deviations) for which inversion 

is considerably less accurate. 
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The problem of dealing with a limited sample of inaccurate measurements is the 
most common obstacle to the application of inverse methods. Usually, these 
inaccuracies can be treated as additive noise superimposed on the true data and, 
therefore, can be handled with statistical techniques. These additive errors have the 
effect of "blurring" or distorting our picture of the solution (model). Unfortunately, 
one cannot conclude that if the error noise is small that the model distortions also will 
be small. The reason for this is that most geophysical kernel functions act to smooth 
the model, thus changing the length scale of the response for both the forward and 
inverse problems. In other words, the solution obtained with inaccurate data using the 
inverse procedure may be very different from the model which actually generated the 
data. In addition, particular solutions to the model are not unique and a wide variety 
of solutions is equally possible. 

In most oceanographic applications of inverse methods, we are primarily interested 
in finding a model which reproduces the observations. Here, the fundamental problem 
is the nonuniqueness of any inverse solution which is one of infinitely many functions 
that can reproduce a finite number of observations. This nonuniqueness becomes 
more severe when the data are inaccurate, as they must be in any practical oceano- 
graphic application. The key to the application of inverse methods in oceanography is 
to select the "correct" (by which we mean the most probable or the most reasonable) 
inverse model-solution. 

Inverse construction in oceanography may take the form of parametric modeling. In 
this case, we write our model as m = f(al, a2, ..., aN) and a numerical scheme is sought 
to find appropriate values of the parameters, ai (i - 1, ... , N). Parameterization is 
justified when the physical system actually has this form and depends on a number of 
input parameters. The model is solved by collecting more than N data points and 
finding the parameters through a least-squares minimization of 

N 

dp -- ~ (ei -- eil) 2 (4.5.6) 
i=1 

where 

ei I = f  (al, a2, . . . ,  aN; ~i) (4.5.7) 

In (4.5.7) Ci is the ith kernel function. 

4.5.2 Inverse theory and absolute currents 

As reviewed by Bennett (1992), an important application of inverse theory to ocean 
processes was the computation of absolute currents for large-scale ocean circulation. 
In the 1970s, two different approaches to this problem were proposed. The first by 
Stommel and Schott (1977) was called the "beta spiral" technique, which demon- 
strated that the vertical structure of large-scale, open-ocean velocity fields could be 
explained using simple equations expressing geostrophy and continuity (conservation 
of mass). The second method, introduced by Wunsch (1977), showed that reference 
velocities could be estimated simultaneously around a closed path in the ocean. The 
resultant absolute velocities were consistent with geostrophy and the conservation of 
heat and salt at various levels. As a guide to oceanographic applications of inverse 
techniques, we provide succinct reviews of both applications. 
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4.5.2.1 The beta spiral method 

Good reviews of the Stommel and Schott (1977) beta spiral method are provided by 
Olbers et al. (1985) and Bennett (1992). The basic equations for this application are the 
usual linearized beta (/3)-plane equations for horizontal geostrophic flow (u, v) in a 
Boussinesq fluid 

--pofV = --Op/Ox (4.5.8a) 

pofu = --Op/Oy (4.5.8b) 

the hydrostatic equation 

0 = - O p / O z -  pg (4.5.9) 

which relate pressure perturbations, p(x, t), to density fluctuations, p(z, t), and the 
conservation of mass (or continuity) relation 

V. u + Ow/Oz - O (4.5.10) 

In these equations, f is the Coriolis parameter, u, v, and w are, respectively, the 
eastward (x), northward (y) and upward (z) components of current velocity, and 
p = p(x, y, z) is the density perturbation about the mean density po = po(Z). Following 
Bennett (1992), we will reserve vector notation for horizontal fields and operators (x = 
(x, y), u = (u, v), etc.). 

Using the above equations, we can derive the well-known "thermal wind" relation, 
whose vertically integrated velocity components are 

u(x, z) - Uo(X) + (e/fpo) I py(X, ~) d~ (4.5.11a) 

Zo 

z 

v(x, z) -Vo(X) - (g/fpo) / px(X, ~) dff (4.5.1 lb) 

Zo 

where subscripts x, y refer to partial differentiation and Uo(X), Vo(X) are the velocity 
components at some reference depth. Equations (4.5.8-4.5.10) also give rise to the 
well-known Sverdrup interior vorticity balance 

wz = ~v/ f  (4.5.12) 

where/3 is the northward (y) gradient of the Coriolis parameter, a n d f  = f (y )  =fo + flY 
in the beta-plane approximation. 

These equations cannot be used alone to determine the full absolute velocity field 
(u, w), even if the density field p were known. However, to resolve this indeterminacy, 
all we need is the velocity field at a particular depth where u = u(x, Zo) and w = w(x, 
Zo). Stommel and Schott (1977) demonstrated that these unknown reference values 
may be estimated by assuming the availability of measurements of some conservative 
tracer r which satisfy the steady-state conservation law 

u . V r  = 0  (4.5.13) 

This tracer might be salinity (S) or potential temperature (0), or some function of both 
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S and O. Combining the vertical derivative of equation (4.5.13) with equations (4.5.11) 
and (4.5.12), yields 

( o) 
u .  V + W-~z (fChz) - (g/po)J (4.5.14) 

where J is the Jacobian J(p,  ok) - pxChy - pyqSx. In equation (4.5.14),fG represents the 
potential vorticity which would be conserved if density p were itself conserved. The 
tracer equation can be used again to eliminate the vertical velocity w 

u. a - (g/po)J(p, 4~) (4.5.15) 

where the vector a is given by 

a(x, z) = 27 (fqSz) ~ f  Chzz (4.5.16) 

Using the integrated thermal wind equations (4.5.11) yields 

Uo. a = c (4.5.17) 

where Uo is the horizontal velocity at depth Zo and c is given by 

c ( x ,  Z) - -  - - u ' .  a + (g/po)Y(p, qh) (4.5.18) 

In equation (4.5.18), the u' is that part of the horizontal velocity in the thermal wind 
relation that depends on the density field. 

Since a and c depend on g, p, f ,  27p, 27f, gS~ and Chzz, they can be determined using 
closely spaced hydrographic stations through measurements of T(z) and S(z). Thus, 
from (4.5.17), we can calculate Uo using the hydrographic data. Equation (4.5.17) holds 
at all levels so that two different levels can be used to specify Uo and Vo. We can then 
calculate the vertical velocity w from (4.5.14). The full velocity solution should be 
independent of the levels chosen for these computations. In reality, (4.5.17) is not an 
exact relation as it was derived from approximate dynamical laws and computed from 
data that contain measurement and sampling errors. As a consequence, our estimate of 
Uo from"(4.5.17) should be done as a best fit to the data from the two levels chosen. 

Suppose that N levels are chosen from the hydrographic data 
(N >_ 2). Let cn = x(x, zn) and an = a(x, zn) for 1 _< n _< N. The simple least-squares 
best fit minimizes 

N N 

R2 = Z R~ - Z (Cn - -  no"  an) 2 (4.5.19) 
n= l  n= l  

where Rn is the residual at level n and R is the root-mean-square (RMS) total error. R 2 
is a min imum if Uo satisfies a simple linear system 

Muo = d (4.5.20) 

where the 2 z 2 systematic, nonnegative matrix M depends on the components of an, 
while d depends on an and c. If a or c varies with depth, equation (4.5.15) implies that 
the total velocity vector u must also depend on depth. For the fl-spiral problem, we 
find that the large-scale ocean currents constitute a spiral with depth at each station. 
The fl-spiral in Figure 4.5.2 is from the study by Stommel and Schott (1977) who used 
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Figure 4.5.2. The ~-spiral in horizontal velocity u = (u(z), v(z)) at 28~ 36~ with depths in 
hundreds of meters. Error bars for the two components of velocity are given at the origin. (After Stommel 

and Schott, 1977.) 

hydrographic data from the North Atlantic to estimate Uo for a reference level of Zo = 
1000 m depth. In this application they found, Uo = 0.0034 +0.00030 m/s and 
Vo = 0.0060 • 0.00013 m/s at 28~ 36~ 

The 13-spiral problem includes two of the basic concepts common to inverse 
methods. First, we deal with an incomplete set of physical laws (4.5.8-4.5.10), or their 
rearrangement, as in the case of the thermal wind equations (4.5.11a, b) which 
includes the unknown reference velocity. Second, we often resort to the indirect 
measurement of an additional quantity which, in the case of the present example, is a 
conservative tracer. This application could have benefited from the inclusion of prior 
estimates of the errors in the dynamical equations and in the hydrographic data. 

4.5.2.2 Wunsch 's  me thod  

In a parallel development to the ~-spiral technique, Wunsch (1977) used inverse 
methods to estimate reference velocities simultaneously around a closed path in the 
ocean (Bennett, 1992). As discussed by Davis (1978), both Wunsch's method and the 
fl-spiral method are closely related. Both approaches assume the vertically integrated 
thermal wind equations (4.5.11) and both provide estimates for the reference velocity 
Uo. In Wunsch's method, the thermal wind velocity, u', is assumed to be zero at the 
reference level Zo, which in general may be a function of position IZo - Zo(X)]. Wunsch 
chose the reference level to be the ocean bottom at Zo(X) - H(x), with Uo(X) defined to 
be the bottom velocity. He then divided the water column into a number of layers 
defined by temperature ranges. This is consistent with the general water mass 
structure of the North Atlantic as defined by Worthington (1976). These layers need 
not be uniform in depth at each hydrographic station. Together with the coastline of 
the U.S., the hydrographic stations formed a closed path in the western North Atlantic 
(Figure 4.5.3). 
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Figure 4.5.3. The locations of hydrographic stations in the North Atlantic used by Wunsch to obtain 
absolute current estimates using inverse theory. (After Wunsch, 1977.) 

We now let v denote the outward component of velocity across the closed triangle 
formed by the lines of hydrographic stations in Figure 4.5.3. That is, v = u. n where n 
is the outward unit normal to the sections. We can further let v' = u ' - n  be the outward 
thermal wind velocity and b = Uo. n be the outward horizontal velocity at the seafloor. 
Let v'n(z) and bn denote the thermal wind velocity estimate and unknown bottom 
velocity midway between the nth station pair, where 1 _< n _< N, and let Vmn' denote the 

' in the mth layer of the water column, where 1 _< m < M. Wunsch average value of v,, 
chose the Mth layer to be the total water column, thus the Mth tracer is the total mass 
of the water column. The assumption of tracer conservation within each layer can be 
written as 

N 

Z (Vtmn q- bn)z~mnZ~kXn : O, 1 ~ m < M (4.5.21) 
n=l  

where AZmn is the thickness of the mth layer at the nth station pair, and Z~mn is the 
separation distance between the nth station pair. This system of M equations for N 
unknowns b,, 1 _< n < N, may be written in matrix notation as 

A b  = c (4.5.22) 

where A is an M • N matrix and c is a column vector of length M with elements 

A mn -- Z~k2;mn Z~OC n (4.5.23a) 

! 
Cm = -- Z vmnAmn 

n=l 

(4.5.23b) 

Wunsch used M = 5 layers as defined by the ranges 12-17~ 4-7~ 2.5-4~ and the 
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entire water column (total mass). The hydrographic data were from N = 43 station 
pairs. For this problem, the matrix equation (4.5.23) represents five equations for 43 
unknown velocities, so that the system is underdetermined and has many different 
solutions. 

As reported by Bennett (1992), Wunsch (1977) somewhat arbitrarily selected the 
vector b with the shortest length. This was found by minimizing 

tl -- bTb + 2I T(Ab - c) (4.5.24) 

where the superscript T denotes the transpose of the matrix and I is an unknown 
Lagrange multiplier consisting of a column vector of length M. It can be shown that t~ 
is a minimum when 

b + A r I  - 0 (4.5.25) 

which gives the minimum solution 

b = A T(AAT)-lc  (4.5.26) 

which satisfies (4.5.22). The symmetric matrix AA T has dimensions M • M and is 
nonnegative (Bennett, 1992). However, AA r may be singular. These singularities may 
be overcome by allowing errors in the hydrographic data and conservation laws; that 
is, by not seeking exact solutions of (4.5.22). We can instead write (4.5.22) in a 
quadratic form adding weights to each term. It can be shown that for positive weights, 
we are able to define an exact solution of the problem. This transfers the problem to 
the selection of these weights. 

This cursory presentation of Wunsch's method for computing reference velocities 
demonstrates, once again, some of the basic elements of inverse methods: A system of 
incomplete physical laws and inexact measurements of related fields. It is necessary to 
admit errors into the equations and data values in order to stabilize the solution and to 
derive a unique solution. In his review, Davis (1978) concluded that both the 
underdetermined problem of Wunsch's method and the overdetermined problem of 
the/3-spiral method are consequences of tacit assumptions made about noise levels 
and fundamental scales of motion. Davis suggested that a more orderly approach 
would be based on Gauss-Markov smoothing (Bennett, 1992) which should be an 
improvement, assuming explicit and quantitative estimates of the noise and its 
structure. 

4.5.3 The IWEX internal wave problem 

Another oceanographic example of the inverse method is found in Olbers et al. (1976) 
and Willebrand et al. (1977). Here, inverse theory is used to determine the three- 
dimensional internal wave spectrum from an array of moored current meters (Figure 
4.5.4). In this example, the Fredholm equation (4.5.1) is written in matrix form and 
becomes 

yi -Aijxj;  1 < i < N; 1 <_j <_ K (4.5.27) 

where Yi are N observed velocity cross-spectra (the data), A 0 are the kernel functions 
(for matrix A) representing the physical relations from internal wave theory and xj are 
the K internal wave parameters to be determined by the inverse method. The inverse 
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Figure 4.5.4. Location of the IWEX study area showing the positions of the three current meter moorings 
on the Hatteras Plain in the western North Atlantic. (From Briscoe, 1975.) 

problem is to find the K parameters of the theoretical internal wave energy density 
cross-spectra using the N observed cross-spectra from the current meter array. We 
achieve this by using the least-squares method to minimize 

c 2 ( a ) -  ~ - y ( a ) ] W [ 9 - y ( a ) ] *  (4.5.28) 

where a represents a set of trial values used to find the minimum and the asterisk (*) 
denotes the complex conjugate. In equation (4.5.28), W is a weighting matrix used to 
scale,the problem and to produce statistical independence (Jackson, 1972). 

It is common to expand the kernel function matrix A into eigenvectors (Jackson, 
1972). Thus, we write 

AVj -- )~juj, A T u j -  ,~iVi (4.5.29) 

Following the singular value decomposition we conducted in the EOF analysis 
(Section 4.3.2), we can factor the matrix A as 

A -  U B V  v (4.5.30) 

where U is an N x P matrix whose columns are the eigenvectors ui, i = 1, ..., P; V is 
the M • P matrix whose columns are the eigenvectors vi, i = 1, . . . ,  P, and B is the 
diagonal matrix of eigenvalues. After U and V are formed from the eigenvectors 
corresponding to the P nonzero eigenvalues of A, there remain (N - P) eigenvectors 
Uj and ( K -  P) eigenvectors Vj which correspond to zero eigenvalues. If we assemble 
these into columns of matrices, we have Uo (an N • ( N -  P) matrix) and Vo (a K 
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x ( K - P )  matrix). This is called annihilator space and reveals that our model is 
composed of both real model space (which corresponds to the data) and annihilator 
space which is linked to zeros in the data field. When we perform an inverse 
calculation, we usually recover a solution which lies in real model space. We must 
remember, however, that any function in space a can be added to the solution and still 
produce a solution that fits the data. With the kernel functions transformed into an 
orthogonal framework (expanded into eigenvectors) we construct the "smallest" or 
minimum energy model-solution. 

When P = N, there is a solution to (4.5.28) and P - M guarantees that a solution, if 
it exists, is unique. For P < N, the system is said to be overconstrained, while if P < 
M, the system is both overconstrained and underdetermined. In the latter case, an 
exact solution may not exist but there will be an infinite number of solutions 
satisfying the least squares criterion. This is the case for the present internal wave 
example, which is both overconstrained and underdetermined. 

Returning to our internal wave problem, we find W in equation (4.5.28) using the 
least-squares method which produces the maximum likelihood estimator for a Gaussian 
distribution. This estimator is defined to be the inverse of the data covariance matrix. 
From the current meter array, 60 time series were divided into 25 overlapping segments. 
For each segment, cross-spectral estimates were computed for each of 600 equidistant 
frequencies. Averaging over segments and frequency bands to increase statistical 
significance, resulted in 3660 cross-spectra. The resultant 3660 x 3660 covariance 
matrix is difficult to invert. The diagonal of the weight matrix was selected to be 

W = diag[1/var(yi)] (4.5.31) 

which reproduces the main features of the maximum likelihood weight matrix (Olbers 
et al., 1976). We note that, again for this problem, there are many more data points 
than parameters so that the system is overconstrained. 

The least-squares solution procedure for this internal wave example is as follows: 

(a) first find a parameter estimate ~ (the best guess); 
(b) linearize at the value a - ~, such that 

b)(a) = . 9 ( a ) +  D ( a -  ~) + . . .  (4.5.32) 

where 

D -  ( ~fJi/~aj } la=~ (4.5.33) 

(c) improve the parameter estimate by using 

a - ~ = H[9(a) - 9(~)] (4.5.34) 

where the N x K matrix H is the generalized inverse of D derived from the linear 
terms of (4.5.32). If the matrix D < T W D  is nonsingular and well conditioned 
then 

H = ( D r W D ) - I D r W  (4.5.35) 

and equation (4.5.11) becomes the least-squares solution of (4.5.29). Since DTWD 
is an K x K matrix, it can be easily inverted using standard diagonalization 
routines. 
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Having now arrived at a solution, A = {A o} of our problem in (4.5.27), we are left 
with two additional questions: (1) How well are the data reproduced by our solution? 
and (2) How accurately do we know our parameters amin? Since our data are subject to 
random errors, we can treaty as a statistical quantity and test the hypothesis thaty and 
the model estimate)(amin) are the same with a 95% probability (inverse estimate must 
be within the 95% confidence interval of our data point). Using the central limit 
theorem for our segment and frequency-averaged spectral values, we can approximate 
the 95% confidence interval on y as 

2 _ ~ y W ~ y  [1 + O(Z -1 )] - -  jr_., 
C 9 5 %  (4.5.36) 

where/Sy - - y - ~ ,  and O(.) indicates the order of magnitude. Now if 

E 2 (amin) ~ E'2 
- -  9 5 %  

(4.5.37) 

the model is a statistically consistent representation of the data. The consistency of the 
IWEX model is provided by the results in Figure 4.5.5, where we have plotted the 
measured, ~2(a), and expected, ~2, values of the parameter c 2. In this case, all values 
have been normalized so that magnitudes provide some indication of the percentage to 
which the observed and estimated (modeled) values of the data, y, coincide. For the 
most part, the measured values of c 2 are scattered about the expected values of this 
parameter.  Except at the M2 tidal frequency and for frequencies greater than 1 cph, 
the hybrid IWEX model gives a consistent description of the IWEX data set to the 
95 % level. 

Our second question regarding the accuracy of the parameter solution amin, can be 
answered by calculating the covariance matrix of the parameters. Using equation 
(4.5.30), we obtain the K x K covariance matrix of the parameters, 

6ar = H~Sy~SyH T (4.5.38) 
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Figure 4.5.5. Consistency for the IWEX study. The error estimate C 2 is the squared difference between 
the observed data and the modeled data obtained by inverse methods. Except for motions in the M2 tidal 
band and at frequencies greater than about 1 cph, the results are within the 95% confidence level. Nmax 
and Naw are the maximum Nyquist frequency and the Nyquist frequency for the deep water, respectively 

(Briscoe, 1975). 
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from the data covariance matrix ~y~y. As usual, there is a reciprocal relation between 
the variance and the resolution of the parameters. Statistically uncorrelated para- 
meters can be found by diagonalizing the matrix in (4.5.38). 

4.4.4 Summary of inverse methods 

In this section we have presented the basic concepts of the general inverse problem 
and have set up the solution system for two different applications in physical oceano- 
graphy. Our treatment is by no means comprehensive and is intended to serve only as 
a guide to understanding the process of forming linear inverse solutions to fit observed 
oceanographic data. 

The first example we treated is the computation of absolute geostrophic velocity by 
specifying an unknown reference velocity. Both the ~-spiral (Stommel and Schott, 
1977) and Wunsch's method are discussed. The dynamics are restricted to geostrophy 
and the conservation of mass. The second example was the specification of parameters 
in theoretical internal wave cross-spectra to reproduce the velocity cross-spectra of an 
array of moored current meters. The statistical nature of both the data and the model 
are considered and the accuracy of the results are expressed in probabilistic terms. 
Readers interested in further discussion of these and other related applications of 
inverse methods are referred to Bennett (1992). This book contains a complete review 
of inverse methods along with discussion of most of the popular applications of 
inverse techniques in physical oceanography. We also direct the interested reader to a 
recent paper by Egbert et al. (1994) in which a generalized inverse method is used to 
determine the four principal tidal constituents (M2, $2, K1, O1) for open ocean tides. 
The tides are constrained (in a least squares sense) by the hydrodynamic equations 
and by observational data. In the first example, solutions are obtained using inversion 
of the harmonic constants from a set of 80 open ocean tide gauges. The second 
example uses cross-over data from TOPEX/POSEIDON satellite altimetry. According 
to the authors, "The inverse solution yields tidal fields which are simultaneously 
smoother, and in better agreement with altimetric and ground truth data, than 
previously proposed tidal models." 




